Bayesian maximum entropy approach and its applications: a review

  • Junyu He
  • Alexander KolovosEmail author
Review Paper


The present paper reviews the conceptual framework and development of the Bayesian Maximum Entropy (BME) approach. BME has been considered as a significant breakthrough and contribution to applied stochastics by introducing an improved, knowledge-based modeling framework for spatial and spatiotemporal information. In this work, one objective is the overview of distinct BME features. By offering a foundation free of restrictive assumptions that limit comparable techniques, an ability to integrate a variety of prior knowledge bases, and rigorous accounting for both exact and uncertain data, the BME approach was coined as introducing modern spatiotemporal geostatistics. A second objective is to illustrate BME applications and adoption within numerous different scientific disciplines. We summarize examples and real-world studies that encompass the perspective of science of the total environment, including atmosphere, lithosphere, hydrosphere, and ecosphere, while also noting applications that extend beyond these fields. The broad-ranging application track suggests BME as an established, valuable tool for predictive spatial and space–time analysis and mapping. This review concludes with the present status of BME, and tentative paths for future methodological research, enhancements, and extensions.


Bayesian maximum entropy Applied stochastics Spatial Spatiotemporal Geostatistics Uncertainty 



The work was supported by the National Natural Science Foundation of China (No. 529105-N11701ZJ). Alexander Kolovos received no funding.


  1. Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of Ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined bayesian maximum entropy-LUR approaches. Environ Health Perspect 122:970–976Google Scholar
  2. Akita Y, Chen JC, Serre ML (2012) The moving-window Bayesian maximum entropy framework: estimation of PM2.5 yearly average concentration across the contiguous United States. J Eposure Sci Environ Epidemiol 22:496–501CrossRefGoogle Scholar
  3. Akita Y, Baldasano JM, Beelen R, Cirach M, de Hoogh K, Hoek G, Nieuwenhuijsen M, Serre ML, de Nazelle A (2014) Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. Environ Sci Technol 48:4452–4459CrossRefGoogle Scholar
  4. Angulo J, Yu H-L, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a BME-SIR approach. PLoS ONE 8:e72168CrossRefGoogle Scholar
  5. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. CRC Press Inc, Boca Raton, FLGoogle Scholar
  6. Bayat B, Zahraie B, Taghavi F, Nasseri M (2013) Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theoret Appl Climatol 113:429–444CrossRefGoogle Scholar
  7. Bayat B, Nasseri M, Naser G (2014) Improving Bayesian maximum entropy and ordinary Kriging methods for estimating precipitations in a large watershed: a new cluster-based approach. Can J Earth Sci 51:43–55CrossRefGoogle Scholar
  8. Beckerman BS, Jerrett M, Serre M, Martin RV, Lee SJ, van Donkelaar A, Ross Z, Su J, Burnett RT (2013) A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ Sci Technol 47:7233–7241CrossRefGoogle Scholar
  9. Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial prediction context: a general formulation. Stoch Environ Res Risk Assess 21(6):695–709CrossRefGoogle Scholar
  10. Bogaert P, Christakos G, Jerrett M, Yu H-L (2009) Spatiotemporal modelling of ozone distribution in the State of California. Atmos Environ 43:2471–2480CrossRefGoogle Scholar
  11. Brahman KD, Kazi TG, Afridi HI, Baig JA, Arain SS, Talpur FN, Kazi AG, Ali J, Panhwar AH, Arain MB (2016) Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Sci Total Environ 544:653–660CrossRefGoogle Scholar
  12. Brus D, Bogaert P, Heuvelink G (2008) Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. Eur J Soil Sci 59:166–177CrossRefGoogle Scholar
  13. Cao C, Xu M, Chang C, Xue Y, Zhong S, Fang L, Cao W, Zhang H, Gao M, He Q, Zhao J, Chen W, Zheng S, Li X (2010) Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-modeling. Chin Sci Bull 55:4168–4178CrossRefGoogle Scholar
  14. Choi KM, Yu HL, Wilson ML (2008) Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001. Stoch Env Res Risk Assess 22:S15–S25CrossRefGoogle Scholar
  15. Choy SL, O’Leary R, Mengersen K (2009) Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models. Ecology 90:265–277CrossRefGoogle Scholar
  16. Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22:763–777CrossRefGoogle Scholar
  17. Christakos G (1991) On certain classes of spatiotemporal random-fields with applications to space-time data-processing. IEEE Trans Syst Man Cybern 21:861–875CrossRefGoogle Scholar
  18. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New YorkGoogle Scholar
  19. Christakos G (2002) On the assimilation of uncertain physical knowledge bases: bayesian and non-Bayesian techniques. Adv Water Resour 25:1257–1274CrossRefGoogle Scholar
  20. Christakos G (2010) Integrative problem-solving in a time of decadence. Springer, New YorkGoogle Scholar
  21. Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling. Kluwer Acadamic Publication, BostonGoogle Scholar
  22. Christakos G, Kolovos A (1999) A study of the spatiotemporal health impacts of ozone exposure. J Expo Anal Environ Epidemiol 9:322–335CrossRefGoogle Scholar
  23. Christakos G, Li X (1998) Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators? Math Geol 30:435–462CrossRefGoogle Scholar
  24. Christakos G, Serre ML (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34:3393–3406CrossRefGoogle Scholar
  25. Christakos G, Serre ML, Kovitz JL (2001) BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. J Geophys Res Atmos 106:9717–9731CrossRefGoogle Scholar
  26. Christakos G, Bogaert P, Serre M (2002) Temporal GIS: advanced functions for field-based applications. Springer, BerlinGoogle Scholar
  27. Christakos G, Kolovos A, Serre ML, Vukovich F (2004) Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans Geosci Remote Sens 42:991–1008CrossRefGoogle Scholar
  28. Christakos G, Olea RA, Serre ML, Wang LL, Yu HL (2005) Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer, BerlinGoogle Scholar
  29. Coulliette AD, Money ES, Serre ML, Noble RT (2009) Space/time analysis of fecal pollution and rainfall in an Eastern North Carolina Estuary. Environ Sci Technol 43:3728–3735CrossRefGoogle Scholar
  30. David M (1977) Geostatistical ore reverse estimation. Elsevier, AmsterdamGoogle Scholar
  31. De Nazelle A, Arunachalam S, Serre ML (2010) Bayesian maximum entropy integration of ozone observations and model predictions: an application for attainment demonstration in North Carolina. Environ Sci Technol 44:5707–5713CrossRefGoogle Scholar
  32. Dionisio KL, Arku RE, Hughes AF, Vallarino J, Carmichael H, Spengler JD, Agyei-Mensah S, Ezzati M (2010) Air pollution in accra neighborhoods: spatial, socioeconomic, and temporal patterns. Environ Sci Technol 44:2270–2276CrossRefGoogle Scholar
  33. D’Or D, Bogaert P (2003) Continuous-valued map reconstruction with the Bayesian maximum entropy. Geoderma 112:169–178CrossRefGoogle Scholar
  34. D’Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch Environ Res Risk Assess 15:87–100CrossRefGoogle Scholar
  35. Douaik A, Van Meirvenne M, Toth T (2005) Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma 128:234–248CrossRefGoogle Scholar
  36. Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331CrossRefGoogle Scholar
  37. Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–520CrossRefGoogle Scholar
  38. Ewing GM (1969) Calculus of variations with applications. W. W. Norton, New YorkGoogle Scholar
  39. Fan L, Xiao Q, Wen JG, Liu Q, Jin R, You DQ, Li XW (2015) Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sens 7:13273–13297CrossRefGoogle Scholar
  40. Fox L, Serre ML, Lippmann SJ, Rodriguez DA, Bangdiwala SI et al (2015) Spatiotemporal approaches to analyzing pedestrian fatalities: the case of Cali, Colombia. Traffic Injury Prevention 16:571–577CrossRefGoogle Scholar
  41. Gao S, Zhu Z, Liu S, Jin R, Yang G, Tan L (2014) Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. Int J Appl Earth Obs Geoinf 32:54–66CrossRefGoogle Scholar
  42. Hampton KH, Serre ML, Gesink DC, Pilcher CD, Miller WC (2011) Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping. Int J Health Geogr 10:1CrossRefGoogle Scholar
  43. Hayunga DK, Kolovos A (2016) Geostatistical space–time mapping of house prices using Bayesian maximum entropy. Intl J of Geog Inf Sci. doi: 10.1080/13658816.2016.1165820 Google Scholar
  44. He T, Yang Z, Liu T, Shen Y, Fu X, Qian X, Zhang Y, Wang Y, Xu Z, Zhu S, Mao C, Xu G, Tang J (2016) Ambient air pollution and years of life lost in Ningbo, China. Sci Rep 6:22485CrossRefGoogle Scholar
  45. Heywood B, Brierley A, Gull S (2006) A quantified Bayesian maximum entropy estimate of Antarctic krill abundance across the Scotia Sea and in small-scale management units from the CCAMLR-2000 survey. Ccamlr Sci 13:97–116Google Scholar
  46. Hristopulos DT, Christakos G (2001) Practical calculation of non-Gaussian multivariate moments in spatiotemporal Bayesian maximum entropy analysis. Math Geol 33(5):543–568CrossRefGoogle Scholar
  47. Hu JG, Zhou J, Zhou GM, Luo YQ, Xu XJ, Li PH, Liang JY (2016) Improving estimations of spatial distribution of soil respiration using the Bayesian maximum entropy algorithm and soil temperature as auxiliary data. PLOS ONE 11(1):e0146589CrossRefGoogle Scholar
  48. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  49. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRefGoogle Scholar
  50. Jerrett M, Turner MC, Beckerman BS, Pope CA III, van Donkelaar A et al (2017) Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ Health Perspect 125(4):552–559Google Scholar
  51. Journel A, Huijbregts C (1978) Mining geostatistics. Acadamic Press, LondonGoogle Scholar
  52. Kolovos A, Christakos G, Serre ML, Miller CT (2002) Computational BME solution of a stochastic advection-reaction equation in the light of site-specific information. Water Resour Res 38(12):1318–1334CrossRefGoogle Scholar
  53. Kolovos A, Skupin A, Jerrett M, Christakos G (2010) Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. Environ Sci Technol 44:6738–6744CrossRefGoogle Scholar
  54. Kolovos A, Angulo JM, Modis K, Papantonopoulos G, Wang J-F, Christakos G (2012) Model-driven development of covariances for spatiotemporal environmental health assessment. Environ Monit Assess. doi: 10.1007/s10661-012-2593-1 Google Scholar
  55. Kolovos A, Smith LM, Schwab-McCoy A, Gengler S, Yu H-L (2016) Emerging patterns in multi-sourced data modeling uncertainty. Spat Stat Spec Issue Emerg Patterns 18A:300–317. doi: 10.1016/j.spasta.2016.05.005 Google Scholar
  56. Krige D (1952) A statistical analysis of some of the borehole values in the orange free state goldfield. J Chem Metall Min Soc S Afr 53:47–70Google Scholar
  57. Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol Lett 13:900–914CrossRefGoogle Scholar
  58. Law DCG, Bernstein KT, Serre ML, Schumacher CM, Leone PA, Zenilman JM, Miller WC, Rompalo AM (2006) Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach. Ann Epidemiol 16:797–804CrossRefGoogle Scholar
  59. Le ND, Zidek JV (2006) Statistical analysis of environmental space-time processes. Springer, BerlinGoogle Scholar
  60. Lee SJ, Wentz EA (2008) Applying Bayesian maximum entropy to extrapolating local-scale water consumption in Maricopa County, Arizona. Water Resour Res 44:W01401. doi: 10.1029/2007WR006101 Google Scholar
  61. Lee S-J, Balling R, Gober P (2008) Bayesian maximum entropy mapping and the soft data problem in urban climate research. Ann Assoc Am Geogr 98:309–322CrossRefGoogle Scholar
  62. Lee S-J, Wentz EA, Gober P (2010) Space–time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona. Stoch Environ Res Risk Assess 24:283–295CrossRefGoogle Scholar
  63. Lee S-J, Serre ML, van Donkelaar A, Martin RV, Burnett RT, Jerrett M (2012) Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 Concentrations across the Continental United States. Environ Health Perspect 120(12):1727–1732Google Scholar
  64. Li AH, Bo YC, Chen L (2013a) Bayesian maximum entropy data fusion of field-observed leaf area index (LAI) and landsat enhanced thematic mapper plus-derived LAI. Int J Remote Sens 34:227–246CrossRefGoogle Scholar
  65. Li AH, Bo YC, Zhu YX, Guo P, Bi J, He YQ (2013b) Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens Environ 135:52–63CrossRefGoogle Scholar
  66. Li X, Li P, Zhu H (2013c) Coal seam surface modeling and updating with multi-source data integration using Bayesian geostatistics. Eng Geol 164:208–221CrossRefGoogle Scholar
  67. Li L, Yang J, Song Y-F, Chen P-Y, Ou C-Q (2016) The burden of COPD mortality due to ambient air pollution in Guangzhou, China. Sci Rep 6:25900CrossRefGoogle Scholar
  68. LoBuglio JN, Characklis GW, Serre ML (2007) Cost-effective water quality assessment through the integration of monitoring data and modeling results. Water Resour Res 43(3):W03435. doi: 10.1029/2006WR005020 CrossRefGoogle Scholar
  69. Ma ZW, Hu XF, Huang L, Bi J, Liu Y (2014) Estimating ground-level PM2.5 in China Using satellite remote sensing. Environ Sci Technol 48:7436–7444CrossRefGoogle Scholar
  70. Mahbub P, Ayoko GA, Goonetilleke A, Egodawatta P, Kokot S (2010) Impacts of Traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads. Environ Sci Technol 44:8904–8910CrossRefGoogle Scholar
  71. Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, Mcbride M, Mengersen K (2012) eliciting expert knowledge in conservation science. Conserv Biol 26:29–38CrossRefGoogle Scholar
  72. Matheron G (1962) Traité de géostatistique appliquée. Technip, ParisGoogle Scholar
  73. Matheron G (1965) Les variables régionalisées et leur estimation. Masson, ParisGoogle Scholar
  74. McCarthy MA, Masters P (2005) Profiting from prior information in Bayesian analyses of ecological data. J Appl Ecol 42:1012–1019CrossRefGoogle Scholar
  75. Messier KP, Akita Y, Serre ML (2012) Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene. Environ Sci Technol 46(5):2772–2780CrossRefGoogle Scholar
  76. Messier KP, Kane E, Bolich R, Serre ML (2014) Nitrate variability in groundwater of North Carolina using monitoring and private well data models. Environ Sci Technol 48:10804–10812CrossRefGoogle Scholar
  77. Messier KP, Campbell T, Bradley PJ, Serret ML (2015) Estimation of groundwater Radon in North Carolina using land use regression and Bayesian maximum entropy. Environ Sci Technol 49:9817–9825CrossRefGoogle Scholar
  78. Modis K, Vatalis KI, Sachanidis C (2013) Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. Int J Coal Geol 112:173–179CrossRefGoogle Scholar
  79. Money ES, Carter GP, Serre ML (2009) Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan river in New Jersey. Environ Sci Technol 43:3736–3742CrossRefGoogle Scholar
  80. Money ES, Sackett DK, Aday DD, Serre ML (2011) Using River distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations. Environ Sci Technol 45:7746–7753CrossRefGoogle Scholar
  81. Nol L, Heuvelink GBM, Veldkamp A, de Vries W, Kros J (2010) Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale. Geoderma 159:9–23CrossRefGoogle Scholar
  82. Olea RA (1999) Geostatistics. Kluwer Acadamic Publication, BostonGoogle Scholar
  83. Orton TG, Lark RM (2007) Estimating the local mean for Bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable. Eur J Soil Sci 58:60–73CrossRefGoogle Scholar
  84. Perez-Hoyos A, Garcia-Haro FJ, San-Miguel-Ayanz J (2012) A methodology to generate a synergetic land-cover map by fusion of different land-cover products. Int J Appl Earth Obs Geoinf 19:72–87CrossRefGoogle Scholar
  85. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  86. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51CrossRefGoogle Scholar
  87. Puangthongthub S, Wangwongwatana S, Kamens RM, Serre ML (2007) Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network. Atmos Environ 41:7788–7805CrossRefGoogle Scholar
  88. Reyes JM, Serre ML (2014) An LUR/BME framework to estimate PM2. 5 explained by on road mobile and stationary sources. Environ Sci Technol 48:1736–1744CrossRefGoogle Scholar
  89. Sanders AP, Messier KP, Shehee M, Rudo K, Serre ML, Fry RC (2012) Arsenic in North Carolina: public health implications. Environ Int 38:10–16CrossRefGoogle Scholar
  90. Savelyeva E, Utkin S, Kazakov S, Demyanov V (2010) Modeling spatial uncertainty for locally uncertain data. Geoenv VII Geostat Environ Appl 16:295–306Google Scholar
  91. Schijven J, Forêt JM, Chardon J, Teunis P, Bouwknegt M, Tangena B (2016) Evaluation of exposure scenarios on intentional microbiological contamination in a drinking water distribution network. Water Res 96:148–154CrossRefGoogle Scholar
  92. Sedda L, Atkinson PM, Filigheddu MR, Cotzia G, Dettori S (2011) Spatio-temporal analysis of tree height in a young cork oak plantation. Int J Geogr Inf Sci 25:1083–1096CrossRefGoogle Scholar
  93. Serre ML, Christakos G (2002) BME-based hydrogeologic parameter estimation in groundwater flow modelling. Acta Univ Carol Geol 46:566–570Google Scholar
  94. Serre ML, Christakos G, Li H, Miller CT (2003a) A BME solution of the inverse problem for saturated groundwater flow. Stoch Environ Res Risk Assess 17(6):354–369CrossRefGoogle Scholar
  95. Serre ML, Kolovos A, Christakos G, Modis K (2003b) An application of the holistochastic human exposure methodology to naturally occurring arsenic in Bangladesh drinking water. Risk Anal 23:515–528CrossRefGoogle Scholar
  96. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  97. Shi T, Yang X, Christakos G, Wang J, Liu L (2015a) Spatiotemporal interpolation of rainfall by combining BME theory and satellite rainfall estimates. Atmosphere 6:1307–1326CrossRefGoogle Scholar
  98. Shi Y, Zhou X, Yang X, Shi L, Ma S (2015b) Merging Satellite Ocean Color Data With Bayesian Maximum Entropy Method. IEEE J Sel Top Appl Earth Obs Remote Sens 8:3294–3304CrossRefGoogle Scholar
  99. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics—a guide for the uninitiated. Trends Genet 15:354–358CrossRefGoogle Scholar
  100. Sun XL, Wu YJ, Lou YL, Wang HL, Zhang C, Zhao YG, Zhang GL (2015) Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China. Eur J Soil Sci 66:1012–1022CrossRefGoogle Scholar
  101. Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. JAWRA J Am Water Resour Assoc 21:365–380CrossRefGoogle Scholar
  102. Tang SL, Yang XF, Dong D, Li ZW (2015) Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method. Front Earth Sci 9:722–731CrossRefGoogle Scholar
  103. Tang Q, Bo Y, Zhu Y (2016) Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method. J Geophys Res Atmos 121(8):4034–4048CrossRefGoogle Scholar
  104. Urbani F, D’Alessandro P, Frasca R, Biondi M (2015) Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zoologischer Anzeiger 258:99–109CrossRefGoogle Scholar
  105. Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. Bioinformatics. doi: 10.1186/1471-2105-7-91 Google Scholar
  106. Vorosmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50:753–765CrossRefGoogle Scholar
  107. Vyas VM, Tong SN, Uchrin C, Georgopoulos PG, Carter GR (2004) Geostatistical estimation of horizontal hydraulic conductivity for the Kirkwood–Cohansey aquifer. J Am Water Resour Assoc 40:187–195CrossRefGoogle Scholar
  108. Wang H, Wang N, Wang B, Zhao Q, Fang H, Fu C, Tang C, Jiang F, Zhou Y, Chen Y, Jiang Q (2016) Antibiotics in drinking water in shanghai and their contribution to antibiotic exposure of school children. Environ Sci Technol 50:2692–2699CrossRefGoogle Scholar
  109. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, New YorkCrossRefGoogle Scholar
  110. Yang Y, Christakos G (2015) Spatiotemporal characterization of ambient PM2. 5 concentrations in Shandong Province (China). Environ Sci Technol 49:13431–13438CrossRefGoogle Scholar
  111. Yu HL, Chu HJ (2010) Understanding space-time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. J Hydrol 381:239–247CrossRefGoogle Scholar
  112. Yu HL, Wang CH (2010) Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos Environ 44:3053–3065CrossRefGoogle Scholar
  113. Yu HL, Wang CH (2013) Quantile-based bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels. Environ Sci Technol 47:1416–1424Google Scholar
  114. Yu HL, Kolovos A, Christakos G, Chen JC, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS-GUI framework. Stoch Environ Res Risk Assess 21:555–572CrossRefGoogle Scholar
  115. Yu HL, Chen JC, Christakos G, Jerrett M (2009) BME estimation of residential exposure to ambient PM10 and Ozone at multiple time scales. Environ Health Perspect 117:537–544CrossRefGoogle Scholar
  116. Yu HL, Chiang CT, Lin SD, Chang TK (2010) Spatiotemporal analysis and mapping of oral cancer risk in Changhua County (Taiwan): an application of generalized Bayesian maximum entropy method. Ann Epidemiol 20:99–107CrossRefGoogle Scholar
  117. Yu HL, Wang CH, Liu MC, Kuo YM (2011) Estimation of fine particulate matter in Taipei using landuse regression and Bayesian maximum entropy methods. Int J Environ Res Public Health 8:2153–2169CrossRefGoogle Scholar
  118. Yu H-L, Ku S-J, Kolovos A (2012) Advanced space-time predictive analysis with STAR-BME. In: Proceedings of the 20th international conference on advances in geographic information systems, pp. 593–596. ACMGoogle Scholar
  119. Yu H-L, Angulo JM, Chen M-H, Wu J, Christakos G (2014) An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan). J Biom 56(3):428–440. doi: 10.1002/bimj.201200270 CrossRefGoogle Scholar
  120. Yu HL, Ku SC, Kolovos A (2016) A GIS tool for spatiotemporal modeling under a knowledge synthesis framework. Stoch Environ Res Risk Assess 30:665–679CrossRefGoogle Scholar
  121. Zagouras A, Kolovos A, Coimbra CFM (2015) Objective framework for optimal distribution of solar irradiance monitoring networks. Renew Energy 80:153–165. doi: 10.1016/j.renene.2015.01.046 CrossRefGoogle Scholar
  122. Zhang FS, Yang ZT, Zhong SB, Huang QY (2016) Exploring mean annual precipitation values (2003–2012) in a specific area (36 degrees N-43 degrees N, 113 degrees E-120 degrees E) using meteorological, elevational, and the nearest distance to coastline variables. Adv Meteorol 2016:2107908. doi: 10.1155/2016/2107908 Google Scholar
  123. Zhao Y, Kockelman KM (2002) The propagation of uncertainty through travel demand models: an exploratory analysis. Ann Reg Sci 36(1):145–163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Islands and Coastal Ecosystems, Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.SpaceTimeWorksSan DiegoUSA

Personalised recommendations