Skip to main content
Log in

A simple two-step method for spatio-temporal design-based balanced sampling

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We introduce a two-step method to perform spatio-temporal balanced sampling in a design-based approach. For populations with spatio-temporal trends and with anisotropic effects in the variable of interest, the prediction can be further improved by selecting samples that are well spread over the entire population in space and time. We control the spread of the sample over the population by using the volume of the corresponding three-dimensional Voronoi tessellation. Indeed, spatio-temporal design-based balanced sampling is even more efficient under the presence of a trend and anisotropic effects. We present an intensive simulation study comparing our method to other available methods for spatio-temporal sampling. Finally, we analyze real data by sampling from a population of temperature stations over six European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarts EH, Korst J (1989) Simulated annealing and boltzman machines. Wiley, New York

    Google Scholar 

  • Brown PJ, Le ND, Zidek JV (1994) Multivariate spatial interpolation and exposure to air pollutants. Can J Stat 2:489–509

    Article  Google Scholar 

  • Brus DJ, Heuvelink GBM (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138:86–95

    Article  Google Scholar 

  • Christakos G (2005) Random field models in earth sciences. Dover, New York

    Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Cox LA Jr (1999) Adaptive spatial sampling of contaminated soils. Risk Anal 19:1059–1069

    Article  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    Google Scholar 

  • Delmelle E, Goovaerts P (2009) Second-phase sampling designs for non-stationary spatial variables. Geoderma 153:205–216

    Article  Google Scholar 

  • Deville JC, Tillé Y (2004) Efficient balanced sampling: the cube method. Biometrika 91:893–912

    Article  Google Scholar 

  • Dobbie MJ, Henderson BL, Stevens DL Jr (2008) Sparse sampling: spatial design for monitoring stream networks. Stat Surv 2:113–153

    Article  Google Scholar 

  • Du Q, Wang D (2005) The optimal centroidal voronoi tessellations and the Gersho’s conjecture in the three-dimensional space. Comput Ind Eng 49:1355–1373

    Google Scholar 

  • Fuentes M, Chaudhuri A, Holland DM (2007) Bayesian entropy for spatial sampling design of environmental data. Environ Ecol Stat 14:323–340

    Article  CAS  Google Scholar 

  • Gneiting T (2001) Criteria of Pólya type for radial positive definite functions. Proc Am Math Soc 129:2309–2318

    Article  Google Scholar 

  • Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev 46:269–282

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Grafström A, Tillé Y (2013) Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24:120–131

    Article  Google Scholar 

  • Grafström A, Lundström NLP, Schelin L (2012) Spatially balanced sampling through the pivotal method. Biometrics 68:514–520

    Article  Google Scholar 

  • Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Article  Google Scholar 

  • Li LF, Wang JF, Cao ZD, Feng XL, Zhang LL, Zhong ES (2008) An information-fusion method to regionalize spatial heterogeneity for improving the accuracy of spatial sampling estimation. Stoch Environ Res Risk A 22:689–704

    Article  Google Scholar 

  • Lister AJ, Scott CT (2009) Use of space-filling curves to select sample locations in natural resource monitoring studies. Environ Model Assess 149:71–80

    Article  Google Scholar 

  • Mateu J, Müller WG (2013) Spatio-temporal design. Advances in efficient data acquisition. Wiley, Chichester

    Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its application. Ecole Nationale Supérieure des Mines de Paris, France

  • Müller WG (2005) A comparison of spatial design methods for correlated observations. Environmetrics 16:495–505

    Article  Google Scholar 

  • Müller WG, Zimmerman DL (1999) Optimal designs for variogram estimation. Environmetrics 10:23–37

    Article  Google Scholar 

  • Müller P, Sanso B, De Iorio M (2004) Optimal Bayesian design by inhomogeneous Markov chain simulation. J Am Stat Assoc 99:788–798

    Article  Google Scholar 

  • Neyman J (1934) On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. J R Stat Soc Ser B Stat Methodol 97:558–606

    Article  Google Scholar 

  • Rogerson PA, Delmelle E, Batta R, Akella M, Blatt A, Wilson G (2004) Optimal sampling design for variables with varying spatial importance. Geogr Anal 36:177–194

    Article  Google Scholar 

  • Royall RM, Herson J (1973) Robust estimation in finite populations I. J Am Stat Assoc 68:880–889

    Article  Google Scholar 

  • Spöck G, Pilz J (2010) Spatial sampling design and covariance-robust minimax prediction based on convex design ideas. Stoch Environ Res Risk A 24:463–482

    Article  Google Scholar 

  • Stein A, Ettema C (2003) An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. Agric Ecosyst Environ 94:31–47

    Article  Google Scholar 

  • Stevens DL Jr, Olsen AR (2004) Spatially-balanced sampling of natural resources. J Am Stat Assoc 99(465):262–278

    Article  Google Scholar 

  • Tillé Y (2006) Sampling algorithms. Spinger, New York

    Google Scholar 

  • Trujillo-Ventura A, Ellis JH (1991) Multiobjective air pollution monitoring network design. Atmos Environ 25:469–479

    Article  Google Scholar 

  • Valliant R, Dorfman AH, Royall RM (2000) Finite population sampling and inference: a prediction approach. Wiley, New York

    Google Scholar 

  • van Groenigen JW, Siderius W, Stein A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87:239–259

    Article  Google Scholar 

  • Wang JF, Haining RP, Cao ZD (2010) Sample surveying to estimate the mean of a heterogeneous surface: reducing the error variance through zoning. Int J Geogr Inf Sci 24:523–543

    Article  Google Scholar 

  • Yates F (1949) Sampling methods for censuses and surveys. Griffin, London

    Google Scholar 

  • Zhu Z, Stein ML (2006) Spatial sampling design for prediction with estimated parameters. J Agric Biol Environ Stat 11:24–49

    Article  Google Scholar 

  • Zimmerman DL, Homer KE (1991) A network design criterion for estimating selected attributes of the semivariogram. Environmetrics 2:425–441

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referees for their many helpful comments that greatly improved this paper. We also wish to acknowledge for the support from Ordered and Spatial Data Center of Excellence of the Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohammadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khavarzadeh, R., Mohammadzadeh, M. & Mateu, J. A simple two-step method for spatio-temporal design-based balanced sampling. Stoch Environ Res Risk Assess 32, 457–468 (2018). https://doi.org/10.1007/s00477-017-1409-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1409-9

Keywords

Navigation