Skip to main content
Log in

On a continuous spectral algorithm for simulating non-stationary Gaussian random fields

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for simulating Gaussian random fields with zero mean and non-stationary covariance functions. The simulated field is obtained as a weighted sum of cosine waves with random frequencies and random phases, with weights that depend on the location-specific spectral density associated with the target non-stationary covariance. The applicability and accuracy of the algorithm are illustrated through synthetic examples, in which scalar and vector random fields with non-stationary Gaussian, exponential, Matérn or compactly-supported covariance models are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arroyo D, Emery X (2017) Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1225-7

    Google Scholar 

  • Bochner S (1933) Monotone funktionen, Stieljessche integrale und harmonische analyse. Math Ann 108:378–410

    Article  Google Scholar 

  • Boisvert JB, Deutsch CV (2011) Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Comput Geosci 37(4):495–510

    Article  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Costa JF (2009) Interpolating datasets with trends: a modified median polish approach. Comput Geosci 35(11):2222–2230

    Article  Google Scholar 

  • Damian D, Sampson PD, Guttorp P (2000) Bayesian estimation of semi-parametric non-stationary spatial covariance structure. Environmetrics 12(2):161–178

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput Geosci 32(10):1615–1628

    Article  Google Scholar 

  • Emery X, Lantuéjoul C (2008) A spectral approach to simulating intrinsic random fields with power and spline generalized covariances. Comput Geosci 12(1):121–132

    Article  Google Scholar 

  • Emery X, Arroyo D, Porcu E (2016) An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stoch Environ Res Risk Assess 30(7):1863–1873

    Article  Google Scholar 

  • Fouedjio F, Séguret S (2016) Predictive geological mapping using closed-form non-stationary covariance functions with locally varying anisotropy: case study at El Teniente Mine (Chile). Nat Resour Res 25(4):431–443

    Article  CAS  Google Scholar 

  • Fouedjio F, Desassis N, Rivoirard J (2016) A generalized convolution model and estimation for non-stationary random functions. Spat Stat 16:35–52

    Article  Google Scholar 

  • Fuentes M (2002) Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat Model 2(4):281–298

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Guttorp P, Sampson PD (1994) Methods for estimating heterogeneous spatial covariance functions with environmental applications. In: Patil GP, Rao CR (eds) Handbook of statistics XII: environmental statistics. Elsevier, New York, pp 663–690

    Google Scholar 

  • Haas TC (1990) Kriging and automated variograms modeling within a moving window. Atmos Environ Part A Gen Top 24(7):1759–1769

    Article  Google Scholar 

  • Harris P, Charlton M, Fotheringham AS (2010) Moving window kriging with geographically weighted variograms. Stoch Environ Res Risk Assess 24(8):1193–1209

    Article  Google Scholar 

  • Higdon D (2002) Space and space-time modeling using process convolutions. In: Anderson CW, Barnett V, Chatwin PC, El-Shaarawi AH (eds) Quantitative methods for current environmental issues. Springer, London, pp 37–56

    Chapter  Google Scholar 

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 6—proceedings of the sixth Valencia international meeting. Oxford University Press, New York, pp 761–768

    Google Scholar 

  • Journel AG (1986) Geostatistics: models and tools for the earth sciences. Math Geol 18(1):119–140

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, Berlin

    Book  Google Scholar 

  • Liang M, Marcotte D (2016) A class of non-stationary covariance functions with compact support. Stoch Environ Res Risk Assess 30(3):973–987

    Article  Google Scholar 

  • Machuca-Mory DF, Deutsch CV (2013) Non-stationary geostatistical modeling based on distance weighted statistics and distributions. Math Geosci 45(1):31–48

    Article  Google Scholar 

  • Marcotte D (2015) TASC3D: a program to test the admissibility in 3D of non-linear models of coregionalization. Comput Geosci 83:168–175

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Ecole des Mines de Paris, Fontainebleau

    Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:439–468

    Article  Google Scholar 

  • Matheron G (1989) Estimating and choosing. Springer, Berlin

    Book  Google Scholar 

  • Monestiez P, Switzer P (1991) Semiparametric estimation of nonstationary spatial covariance models by metric multidimensional scaling. Technical report, Stanford University, USA

  • Nychka D, Wikle C, Royle A (2002) Multiresolution models for nonstationary spatial covariance functions. Stat Model 2(4):315–331

    Article  Google Scholar 

  • Paciorek CJ, Schervish MJ (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17(5):483–506

    Article  Google Scholar 

  • Pintore A, Holmes CC (2005) A dimension-reduction approach for spectral tempering using empirical orthogonal functions. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 1007–1015

    Chapter  Google Scholar 

  • Sampson PD, Guttorp PT (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87(417):108–119

    Article  Google Scholar 

  • Sampson PD, Damian D, Guttorp P (2001) Advances in modeling and inference for environmental processes with nonstationary spatial covariance. In: Monestiez P, Allard D, Froidevaux R (eds) Proceedings of the third European conference on geostatistics for environmental applications geoENV III. Springer, Dordrecht, pp 17–32

    Chapter  Google Scholar 

  • Schlather M (2010) Some covariance models based on normal scale mixtures. Bernoulli 16(3):780–797

    Article  Google Scholar 

  • Shinozuka M (1971) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1B):357–367

    Article  Google Scholar 

  • Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128

    Article  Google Scholar 

  • Smith RL (1996) Estimating nonstationary spatial correlations. University of North Carolina, Chapel Hill

    Google Scholar 

  • Stein M (2005) Non-stationary spatial covariance functions. Technical report, University of Chicago

  • Stephenson J, Holmes C, Gallagher K, Pintore A (2005) A statistical technique for modeling non-stationary spatial processes. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 125–134

    Chapter  Google Scholar 

  • Zhu Z, Wu Y (2010) Estimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data. J Comput Graph Stat 19(1):74–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers for their constructive comments and acknowledge the support of the Chilean Commission for Scientific and Technological Research, through Projects CONICYT PIA Anillo ACT1407 and CONICYT/FONDECYT/POSTDOCTORADO/N°3140568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Arroyo, D. On a continuous spectral algorithm for simulating non-stationary Gaussian random fields. Stoch Environ Res Risk Assess 32, 905–919 (2018). https://doi.org/10.1007/s00477-017-1402-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1402-3

Keywords

Navigation