Skip to main content

Advertisement

Log in

Prospective scenarios of the saltwater intrusion in an estuary under climate change context using Bayesian neural networks

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In recent decades, saltwater intrusion over some low-lying coastal regions was deteriorated by rising sea-level and decreasing streamflow in the context of climate change. Though physically-based hydrodynamic models are the most detailed means to simulate salinity processes, they are commonly restricted by data insufficiency issues both in spatial resolution and temporal lasting. This motivates us to build a statistical model enable simulation and scenario analysis for coastal salinity change with limited observations. A Bayesian neural network (BNN) model is built hereby to simulate salinity. It offers more precise estimation compared with the conventional artificial neural network. Meanwhile, the model gives the uncertainty behaviors of the final salinity simulation which is not available for other methods. Future scenarios of salinity change are constructed and analyzed in different time periods on the basis of the validated BNN model. Results indicate that the water quality over lower Pearl River is degrading along with more significant uncertainties. Further analysis suggests that streamflow alteration has a more direct impact on salinity variations than the sea-level change does. The method allows a profound analysis of the potential influence on water quality degradation in coastal and low-lying regions in support of water management and adaptation toward global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnell NW, Charlton MB, Lowe JA (2014) The effect of climate policy on the impacts of climate change on river flows in the UK. J Hydrol 510:424–435. doi:10.1016/j.jhydrol.2013.12.046

    Article  Google Scholar 

  • Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18:247–260. doi:10.1007/s10040-009-0514-3

    Article  CAS  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 21(1):1–23

    Article  Google Scholar 

  • Fewtrell L, Bartram J, Organization WH et al (2001) Water quality: guidelines, standards, and health: assessment of risk and risk management for water-related infectious disease. IWA Publishing, London

    Google Scholar 

  • Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25(4):537–554. doi:10.1007/s00477-010-0420-1

    Article  Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Change 3(9): 802–806, doi:10.1038/nclimate1979, arXiv:1011.1669v3

  • Hastings WK (1979) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Huang Z, Zong Y, Zhang W (2004) Coastal inundation due to sea level rise in the Pearl River delta, China. Nat Hazards 33(2):247–264. doi:10.1023/B:NHAZ.0000037038.18814.b0

    Article  Google Scholar 

  • IPCC, Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ipcc AR5:1535

  • Jana RB, Mohanty BP, Springer EP (2008) Multiscale Bayesian neural networks for soil water content estimation. Water Resour Res. doi:10.1029/2008WR006879

  • Ji JH, Chang NB (2005) Risk assessment for optimal freshwater inflow in response to sustainability indicators in semi-arid coastal bay. Stoch Environ Res Risk Assess 19(2):111–124. doi:10.1007/s00477-004-0219-z

    Article  Google Scholar 

  • Jiang T, Chen YD, Xu CY, Chen X, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol 336(3–4):316–333. doi:10.1016/j.jhydrol.2007.01.010

    Article  Google Scholar 

  • Khan MS, Coulibaly P (2006) Bayesian neural network for rainfall-runoff modeling. Water Resour Res. doi:10.1029/2005WR003971

  • Kingston GB, Lambert MF, Maier HR (2005) Bayesian training of artificial neural networks used for water resources modeling. Water Resour Res 41(12):1–11. doi:10.1029/2005WR004152

    Article  Google Scholar 

  • Kuang CP, Chen W, Gu J, Zhu DZ, He LL, Huang HC (2014) Numerical assessment of the impacts of potential future sea-level rise on hydrodynamics of the Yangtze River estuary, China. J Coast Res 30(3):586–597. doi:10.2112/jcoastres-d-13-00149.1

    Article  Google Scholar 

  • Lampinen J, Vehtari A (2001) Bayesian approach for neural networksreview and case studies. Neural Netw 14(3):257–274

    Article  CAS  Google Scholar 

  • Li M, Yang D, Chen J, Hubbard SS (2012) Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework. Water Resour Res. doi:10.1029/2010WR010062

  • Liang F (2005) Bayesian neural networks for nonlinear time series forecasting. Stat Comput 15(1):13–29. doi:10.1007/s11222-005-4786-8

    Article  Google Scholar 

  • Liang F, Wong WH (2001) Real-parameter evolutionary monte carlo with applications to Bayesian mixture models. J Am Stat Assoc 96(454):653–666

    Article  Google Scholar 

  • Lin K, Lian Y, Chen X, Lu F (2014a) Changes in runoff and eco-flow in the Dongjiang River of the Pearl River Basin, China. Front Earth Sci 8(4):547–557. doi:10.1007/s11707-014-0434-y

    Article  CAS  Google Scholar 

  • Lin K, Lv F, Chen L, Singh VP, Zhang Q, Chen X (2014) Xinanjiang model combined with curve number to simulate the effect of land use change on environmental flow. J Hydrol 519(PD):3142–3152. doi:10.1016/j.jhydrol.2014.10.049

    Article  Google Scholar 

  • MacKay DJ (1992) A practical bayesian framework for backpropagation networks. Neural Comput 4(3):448–472

    Article  Google Scholar 

  • May R, Dandy G, Maier H (2011) Review of input variable selection methods for artifical neural networks. INTECH Open Access Publisher

  • McCarthy JJ (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Muchebve E, Nakamura Y, Suzuki T, Kamiya H (2016) Analysis of the dynamic characteristics of seawater intrusion using partial wavelet coherence: a case study at Nakaura Watergate, Japan. Stoch Environ Res Risk Assess 30(8):2143–2154. doi:10.1007/s00477-016-1336-1

    Article  Google Scholar 

  • Nabney I (2002) NETLAB: algorithms for pattern recognition. Springer Science & Business Media, Berlin

    Google Scholar 

  • Pool M, Carrera J, Dentz M, Hidalgo JJ, Abarca E (2011) Vertical average for modeling seawater intrusion. Water Resour Res. doi:10.1029/2011WR010447

  • Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci 17(1):421–443. doi:10.5194/hess-17-421-2013

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by back propagation. Parallel distributed processing: exploration in the microstructure of cognition 1

  • Shaha DC, Cho YK (2009) Comparison of empirical models with intensively observed data for prediction salt intrusion in the Sumjin River estuary, Korea. Hydrol Earth Syst Sci Discuss 6(2):1879–1905. doi:10.5194/hessd-6-1879-2009

    Article  Google Scholar 

  • Suen JP, Lai HN (2013) A salinity projection model for determining impacts of climate change on river ecosystems in Taiwan. J Hydrol 493:124–131. doi:10.1016/j.jhydrol.2013.04.020

    Article  CAS  Google Scholar 

  • Sutherland J, Walstra DJR, Chesher TJ, van Rijn LC, Southgate HN (2004) Evaluation of coastal area modelling systems at an estuary mouth. Coast Eng 51(2):119–142. doi:10.1016/j.coastaleng.2003.12.003

    Article  Google Scholar 

  • Taye MT, Ntegeka V, Ogiramoi NP, Willems P (2011) Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol Earth Syst Sci 15(1):209–222. doi:10.5194/hess-15-209-2011

    Article  Google Scholar 

  • Wang B (2012) Salt intrusion in the Pearl River estuary. PhD thesis, East China Normal University

  • Wang W, Xing W, Shao Q, Yu Z, Peng S, Yang T, Yong B, Taylor J, Singh VP (2013a) Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling. J Geophys Res Atmos 118(10):4049–4068

    Article  Google Scholar 

  • Wang W, Xing W, Yang T, Shao Q, Peng S, Yu Z, Yong B (2013b) Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin, China. Hydrol Process 27(24):3375–3393

    Article  Google Scholar 

  • Wang X, Yang T, Shao Q, Acharya K, Wang W, Yu Z (2012) Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stoch Environ Res Risk Assess 26(3):405–418. doi:10.1007/s00477-011-0535-z

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17(2):145–157. doi:10.1016/s1364-8152(01)00060-3

    Article  Google Scholar 

  • Yang T, Zhang Q, Chen Y, Tao X, Xu C, Chen X (2008) A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol Process 22(18):3829–3843. doi:10.1002/hyp.6993

    Article  Google Scholar 

  • Yang T, Shao Q, Hao Z, Chen X, Zhang Z, Xu C, Sun L (2010) Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J Hydrol 380:386–405. doi:10.1016/j.jhydrol.2009.11.013

    Article  Google Scholar 

  • Yang T, Wang X, Zhao C, Chen X, Yu Z, Shao Q, Xu CY, Xia J, Wang W (2011) Changes of climate extremes in a typical arid zone: observations and multimodel ensemble projections. J Geophys Res Atmos 116:1–18. doi:10.1029/2010JD015192

    Google Scholar 

  • Yang T, Li H, Wang W, Xu CY, Yu Z (2012) Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrol Process 26(23):3510–3523. doi:10.1002/hyp.8427

    Article  Google Scholar 

  • Yang T, Shi P, Yu Z, Li Z, Wang X, Zhou X (2015a) Probabilistic modeling and uncertainty estimation of urban water consumption under an incompletely informational circumstance. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1081-x

  • Yang T, Wang C, Chen Y, Chen X, Yu Z (2015) Climate change and water storage variability over an arid endorheic region. J Hydrol 529(P1):330–339. doi:10.1016/j.jhydrol.2015.07.051

    Article  Google Scholar 

  • Zhang Q, Xu CY, Chen YD, Yang T (2009a) Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol Process 23(11):1565–1574. doi:10.1002/hyp.7268, URL http://jamsb.austms.org.au/courses/CSC2408/semester3/resources/ldp/abs-guide.pdf

  • Zhang W, Mu S, Zhang Y, Chen K (2012) Seasonal and interannual variations of flow discharge from Pearl River into sea. Water Sci Eng 5(41006046):399–409. doi:10.3882/j.issn.1674-2370.2012.04.004

    Google Scholar 

  • Zhang X, Zhao K (2012) Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour Manag 26(8):2365–2382

    Article  Google Scholar 

  • Zhang X, Liang F, Srinivasan R, Van Liew M (2009b) Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour Res. doi:10.1029/2008WR007030

  • Zhao R (1992) The Xinanjiang model applied in China. J Hydrol 135(1–4):371–381. doi:10.1016/0022-1694(92)90096-E

    Google Scholar 

Download references

Acknowledgements

The work was jointly supported by the National Natural Science Foundation of China (Grants 41371051, 51421006, 41561134016), the Chinese Academy of Sciences (Grant KZZD-EW-12), the Ministry of Science and Technology of China (Grant 2013BAC10B01) and the Fundamental Research Funds for the Central Universities (Grant 2015B31214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yang, T., Shi, P. et al. Prospective scenarios of the saltwater intrusion in an estuary under climate change context using Bayesian neural networks. Stoch Environ Res Risk Assess 31, 981–991 (2017). https://doi.org/10.1007/s00477-017-1399-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1399-7

Keywords

Navigation