Advancements in hydrochemistry mapping: methods and application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh, India

Abstract

The area east of Varanasi is one of numerous places along the watershed of the Ganges River with groundwater concentrations of arsenic surpassing the maximum value of 10 parts per billion (ppb) recommended by the World Health Organization in drinking water. Here we apply geostatistics and compositional data analysis for the mapping of arsenic and iron to help in understanding the conditions leading to the occurrence of elevated level of arsenic in groundwater. The methodology allows for displaying concentrations of arsenic and iron as maps consistent with the limited information from 95 water wells across an area of approximately 210 km2; visualization of the uncertainty associated with the sampling; and summary of the findings in the form of probability maps. For thousands of years, Varanasi has been on the erosional side in a meander of the river that is free of arsenic values above 10 ppb. Maps reveal two anomalies of high arsenic concentrations on the depositional side of the valley, which has started seeing urban development. The methodology using geostatistics combined with compositional data analysis is completely general, so this study could be used as a prototype for hydrochemistry mapping in other areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Acharyya SK (2005) Arsenic levels in groundwater from Quaternary alluvium in Ganga plain and the Bengal Basin, Indian Subcontinent: Insights into influence of stratigraphy. Gondwana Res 8(1):55–66

    CAS  Article  Google Scholar 

  2. Aitchison J (2003) The statistical analysis of compositional data. The Blackburn Press, Caldwell, NJ (Reprint of 1986 edition plus 19 pages of new text)

    Google Scholar 

  3. Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and where should we be heading? Math Geol 37(7):829–850

    Article  Google Scholar 

  4. ArcGIS (2014) Mapping without limits. https://www.arcgis.com/features/

  5. Ball JW, Nordstrom DK (1992) User’s manual for WATEQ4F with revised thermodynamic database and test cases for calculating speciation of minor, trace and redox elements in natural waters. US Geological Survey Open File Report 91-183

  6. British Geological Survey (BGS) (2001) Arsenic contamination of groundwater in Bangladesh. Technical report, BGS, Department of Public Health Engineering (Bangladesh), Report WC/00/019, http://www.bgs.ac.uk/arsenic/Bangladesh/

  7. Caers J (2011) Modeling uncertainty in the earth sciences. Wiley-Blackwell, Chichester

    Google Scholar 

  8. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201

    CAS  Article  Google Scholar 

  9. Chandana M, Enmark G, Nordborg D, Sracek O, Nath B, Nickson RT, Herbert R, Jacks G, Mukherjee A, Ramanathan AL, Choudhury R, Bhattacharya P (2015) Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra River flood plain, India. J Hydrol Reg Stud 4:154–171

    Article  Google Scholar 

  10. Charlet L, Chakraborty S, Appelo CAJ, Roman-Ross G, Nath B, Ansari AA, Lanson M, Chatterjee D, Mallik SB (2007) Chemodynamics of an arsenic ‘hotspot’ in a West Bengal aquifer: a field and reactive transport modeling study. Appl Geochem 22(7):1273–1292

    CAS  Article  Google Scholar 

  11. Chauhan VS, Nickson RT, Chauhan D, Iyengar L, Sankararamakrishnan N (2009) Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 75(1):83–91

    CAS  Article  Google Scholar 

  12. Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  13. Dubrule O (1983) Two methods with different objectives: splines and kriging. J Int Assoc Math Geol 15(2):245–257

    Article  Google Scholar 

  14. Egozcue JJ (2009) Reply to “On the Harker variation diagrams;…” by J. A. Cortés. Math Geosci 41(7):829–834

    Article  Google Scholar 

  15. Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828

    Article  Google Scholar 

  16. Egozcue JJ, Pawlowsky-Glahn V (2006) Simplicial geometry for compositional data. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences: from theory to practice. Geological Society Special Publication No. 264, London, pp 145–159

  17. Egozcue JJ, Pawlowsky-Glahn V (2011) Basic concepts and procedures. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis: theory and applications. Wiley, Chichester, pp 12–28

    Google Scholar 

  18. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  19. Emery X (2004) Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stoch Environ Res Risk Assess 18(6):401–413

    Article  Google Scholar 

  20. Gómez-Hernández J, Journel AG (1993) Sequential Gaussian simulation of multigaussian fields. In: Soares A (ed) Geostatistics Troia’92, vol 1. Kluwer Academic Publishers, Dordrecht, pp 85–94

    Google Scholar 

  21. Greenacre M (2011) Measuring subcompositional incoherence. Math Geosci 43(6):681–693

    Article  Google Scholar 

  22. Hogg RV, McKean J, Craig AT (2012) Introduction to mathematical statistics, 7th edn. Pearson Education Ltd., Harlow

    Google Scholar 

  23. Isaacs EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  24. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  25. Kayastha SL, Mohan A (2000) Varanasi: an ancient city of continuity and culture. In: Proceedings of the national symposium milestones in petrology at the end of the millennium and future perspectives, Department of Geology, Banaras Hindu University, Varanasi, pp 20–29

  26. Khan AA, Nawami PC, Srivastava MC (1988) Geomorphological evolution of the area around Varanasi, UP with the aid of aerial photographs and LANDSAT imageries. Geol Surv India Rec 113:31–39

    Google Scholar 

  27. Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105(3):83–94

    CAS  Article  Google Scholar 

  28. Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    CAS  Article  Google Scholar 

  29. McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour Res 37(1):109–117

    CAS  Article  Google Scholar 

  30. Meyzonnat G, Larocque M, Barbecot F, Pinti DL, Gagné S (2016) The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada). Environ Earth Sci 75(1):article 68

  31. Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer Academic Publishers, Norwell

    Google Scholar 

  32. Olea RA (2006) A six-step practical approach to semivariogram modeling. Stoch Environ Res Risk Assess 39(5):453–467

    Google Scholar 

  33. Olea RA (2009) A practical primer on geostatistics: US Geological Survey, Open-File Report 2009-1103, http://pubs.usgs.gov/of/2009/1103

  34. Palarea-Albaladejo J, Martín-Fernández JA (2015) zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom Intell Lab Syst 143:85–96

    CAS  Article  Google Scholar 

  35. Pawlowsky-Glahn V, Egozcue JJ (2016) Spatial analysis of compositional data: a historical review. J Geochem Explor 164:28–32

    CAS  Article  Google Scholar 

  36. Pawlowsky-Glahn V, Egozcue JJ, Lovell D (2015a) Tools for compositional data with a total. Stat Model 15(2):175–190

    Article  Google Scholar 

  37. Pawlowsky-Glahn V, Egozcue JJ, Olea RA, Pardo-Igúzquiza E (2015b) Cokriging of compositional balances including a dimension reduction and retrieval of original units. J South Afr Inst Min Metall 115(1):59–72

    Article  Google Scholar 

  38. Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015c) Modeling and analysis of compositional data. Wiley, Chichester

    Google Scholar 

  39. Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling, 2nd edn. Oxford University Press, New York

    Google Scholar 

  40. Raju NJ (2012) Arsenic exposure through groundwater in the middle Ganga plain in the Varanasi environs, India: a future threat. J Geol Soc India 79:302–314

    Article  Google Scholar 

  41. Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS—a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  42. Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) (2012) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  43. Rivoirard J (2004) On simplifications of cokriging. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 195–203

    Google Scholar 

  44. Saha D, Shukla RR (2013) Genesis of arsenic rich groundwater and the search for alternative safe aquifers in the Gangetic plain, India. Water Environ Res 85(12):2254–2264

    CAS  Article  Google Scholar 

  45. Sha ZUH, Ahmad Z (2015) Hydrochemical mapping of the Upper Thal Doab (Pakistan) using the geographical information system. Environ Earth Sci 74(3):2757–2773

    Article  Google Scholar 

  46. Shah BA (2010) Arsenic contaminated groundwater in Holocene sediments form part of middle Ganga plain, Uttar Pradesh, India. Curr Sci 98(10):1359–1365

    CAS  Google Scholar 

  47. Shukla UK, Raju NJ (2008) Migration of the Ganga River and its implications on hydro-geological potential of Varanasi area, U.P., India. J Earth Syst Sci 117(4):489–498

    Article  Google Scholar 

  48. Singh IB (2004) Late Quaternary history of the Gangetic plain. J Geol Soc India 64:431–454

    CAS  Google Scholar 

  49. Singh M, Singh IB, Muller G (2007) Sediment characteristics and transportation dynamics of the Ganga River. Geomorphology 86(1–2):144–175

    Article  Google Scholar 

  50. Singh S, Raju NJ, Gossel W, Wycisk P (2016) Assessment of pollution potential of leachate from the municipal solid waste disposal site and its impact on groundwater quality, Varanasi environs, India. Arab J Geosci 9(2):article 131

  51. Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 185(6):4995–5002

    CAS  Article  Google Scholar 

  52. Srivastava P, Singh IB, Sharma M, Singhvi AK (2003) Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plain, India. Paleaogeogr Paleaoclimatol Paleaoecol 197(1–2):15–41

    Article  Google Scholar 

  53. Tandon SK, Gibling MR, Sinha R, Singh V, Ghazanfari P, Dasgupta A, Jain M, Jain V (2006) Alluvial valleys of the Ganga Plains, India: timing and causes of incision. In: Dalrymple RW, Lickie DA, Tillman RW (eds) Incised valleys in time and space. Society for Sedimentary Geology (SEPM) Special Publications 85, Tulsa, pp 15–35

    Google Scholar 

  54. Verly G (1993) Sequential Gaussian cosimulation: a simulation method integrating several types of information. In: Soares A (ed) Geostatistics Troia’92, vol 1. Kluwer Academic Publishers, Dordrecht, pp 543–554

    Google Scholar 

  55. Webster R, Oliver MA (2015) Basic steps in geostatistics: the variogram and kriging. Springer, Heidelberg

    Google Scholar 

  56. World Health Organization (WHO) (2011) Arsenic in drinking water, http://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf

Download references

Acknowledgements

This paper completed a mandatory review and approval by the U.S. Geological Survey (USGS; http://pubs.usgs.gov/circ/1367/) before final submission to the journal. We wish to thank Tanya Gallegos (USGS) and Josep Martín-Fernández (University of Girona) for suggestions that helped in improving the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. N. Janardhana Raju has been supported by the Department of Science and Technology (DST), New Delhi, under research project “SERC” (SR/S4/ES-160/2005) during 2006–2008. J.J. Egozcue and V. Pawlowsky-Glahn have been supported by the Spanish Ministry of Education and Science under projects ‘CODA-RETOS’ (Ref. MTM2015-65016-C2-1-R MINECO/FEDER.UE) and ‘COSDA’ (Ref. 2014SGR551); and by the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Olea.

Appendix

Appendix

Table 2 Well information and results of laboratory analyses for 11 ions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olea, R.A., Raju, N.J., Egozcue, J.J. et al. Advancements in hydrochemistry mapping: methods and application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh, India. Stoch Environ Res Risk Assess 32, 241–259 (2018). https://doi.org/10.1007/s00477-017-1390-3

Download citation

Keywords

  • Ganges River
  • Geostatistics
  • Stochastic simulation
  • Compositional data analysis
  • Isometric logratio transformation
  • Balance
  • Geochemistry