A Bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles

  • Maeregu Woldeyes Arisido
  • Carlo Gaetan
  • Davide Zanchettin
  • Angelo Rubino
Original Paper


Coupled atmosphere–ocean general circulation models are key tools to investigate climate dynamics and the climatic response to external forcings, to predict climate evolution and to generate future climate projections. Current general circulation models are, however, undisputedly affected by substantial systematic errors in their outputs compared to observations. The assessment of these so-called biases, both individually and collectively, is crucial for the models’ evaluation prior to their predictive use. We present a Bayesian hierarchical model for a unified assessment of spatially referenced climate model biases in a multi-model framework. A key feature of our approach is that the model quantifies an overall common bias that is obtained by synthesizing bias across the different climate models in the ensemble, further determining the contribution of each model to the overall bias. Moreover, we determine model-specific individual bias components by characterizing them as non-stationary spatial fields. The approach is illustrated based on the case of near-surface air temperature bias in the tropical Atlantic and bordering regions from a multi-model ensemble of historical simulations from the fifth phase of the Coupled Model Intercomparison Project. The results demonstrate the improved quantification of the bias and interpretative advantages allowed by the posterior distributions derived from the proposed Bayesian hierarchical framework, whose generality favors its broader application within climate model assessment.


Bayesian hierarchical method Climate biases Climate model uncertainty Gaussian kernels Posterior distribution Spatial model 


  1. Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. CRC Press, New YorkGoogle Scholar
  2. Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res Atmos 108:8776. doi:10.1029/2002JD002865 CrossRefGoogle Scholar
  3. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Change 2:433–436CrossRefGoogle Scholar
  4. Brohan P, Kennedy JJ, Harris I, Tett SF, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos. doi:10.1029/2005JD006548 Google Scholar
  5. Buser CM, Knsch HR, Lthi D, Wild M, Schr C (2009) Bayesian multi-model projection of climate: bias assumptions and interannual variability. Clim Dyn 33:849–868CrossRefGoogle Scholar
  6. Christensen JH, Boberg F, Christensen OB, LucasPicher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett. doi:10.1029/2008GL035694 Google Scholar
  7. Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904CrossRefGoogle Scholar
  8. Cressie N (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  9. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  10. Furrer R, Sain SR, Nychka D, Meehl GA (2007) Multivariate Bayesian analysis of atmosphereocean general circulation models. Environ Ecol Stat 14:249–266CrossRefGoogle Scholar
  11. Gelfand AE, Diggle P, Fuentes M, Guttorp P (2010) Handbook of spatial statistics. Chapman and Hall / CRC, FloridaCrossRefGoogle Scholar
  12. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1:515–534CrossRefGoogle Scholar
  13. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall, LondonGoogle Scholar
  15. Higdon D (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5:173–190CrossRefGoogle Scholar
  16. Jun M, Knutti R, Nychka DW (2008) Spatial analysis to quantify numerical model bias and dependence: how many climate models are there? J Am Stat Assoc 103:934–947CrossRefGoogle Scholar
  17. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  18. Kang EL, Cressie N, Sain SR (2012) Combining outputs from the North American regional climate change assessment program by using a Bayesian hierarchical model. J R Stat Soc Ser C Appl Stat 61:291–313CrossRefGoogle Scholar
  19. Kaufman CG, Sain SR (2010) Bayesian functional ANOVA modeling using Gaussian process prior distributions. Bayesian Anal 5:123–149CrossRefGoogle Scholar
  20. Keller CF (2009) Global warming: a review of this mostly settled issue. Stoch Environ Res Risk Assess 23:643–676CrossRefGoogle Scholar
  21. Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  22. Knutti R (2010) The end of model democracy? An editorial comment. Clim Change 102:395–404CrossRefGoogle Scholar
  23. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106CrossRefGoogle Scholar
  24. Leith NA, Chandler RE (2010) A framework for interpreting climate model outputs. J R Stat Soc Ser C Appl Stat 59:279–296CrossRefGoogle Scholar
  25. Milinski S, Bader J, Haak H, Siongco AC, Jungclaus JH (2016) High atmospheric horizontal resolution eliminates the wind-driven coastal warm bias in the southeastern tropical Atlantic. Geophys Res Lett (Accepted for publication)Google Scholar
  26. Mugglin AS, Carlin BP (1998) Hierarchical modeling in geographic information systems: population interpolation over incompatible zones. J Agric Biol Environ Stat 3:111–130CrossRefGoogle Scholar
  27. Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Environ Res Risk Assess 17:291–305CrossRefGoogle Scholar
  28. O’Malley AJ, Zaslavsky AM (2008) Domain-level covariance analysis for multilevel survey data with structured nonresponse. J Am Stat Assoc 103:1405–1418CrossRefGoogle Scholar
  29. Polson NG, Scott JG (2012) On the half-Cauchy prior for a global scale parameter. Bayesian Anal 7:887–902CrossRefGoogle Scholar
  30. Sain SR, Furrer R (2010) Combining climate model output via model correlations. Stoch Environ Res Risk Assess 24:821–829CrossRefGoogle Scholar
  31. Stroud JR, Mller P, Sansó B (2001) Dynamic models for spatiotemporal data. J R Stat Soc Ser B Stat Methodol 63:673–689CrossRefGoogle Scholar
  32. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  33. Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Clim 18:1524–1540CrossRefGoogle Scholar
  34. Toniazzo T, Woolnough S (2014) Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn 43:2889–2913CrossRefGoogle Scholar
  35. Wahl S, Latif M, Park W, Keenlyside N (2015) On the tropical Atlantic SST warm bias in the Kiel Climate Model. Clim Dyn. doi:10.1007/s00382-009-0690-9 Google Scholar
  36. Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205CrossRefGoogle Scholar
  37. Zanchettin D, Bothe O, Lehner F, Ortega P, Raible CC, Swingedouw D (2015) Reconciling reconstructed and simulated features of the winter Pacific/North American pattern in the early 19th century. Clim Past 11:939–958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Maeregu Woldeyes Arisido
    • 1
  • Carlo Gaetan
    • 1
  • Davide Zanchettin
    • 1
  • Angelo Rubino
    • 1
  1. 1.Department of Environmental Sciences, Informatics and StatisticsCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations