Stochastic modelling of seasonal and yearly rainfalls with low-frequency variability

Abstract

Stochastic rainfall models are important for many hydrological applications due to their appealing ability to simulate synthetic series that resemble the statistical characteristics of the observed series for a location of interest. However, an important limitation of stochastic rainfall models is their inability to preserve the low-frequency variability of rainfall. Accordingly, this study presents a simple yet efficient stochastic rainfall model for a tropical area that attempts to incorporate seasonal and inter-annual variabilities in simulations. The performance of the proposed stochastic rainfall model, the tropical climate rainfall generator (TCRG), was compared with a stochastic multivariable weather generator (MV-WG) in various aspects. Both models were applied on 17 rainfall stations at the Kelantan River Basin, Malaysia, with tropical climate. The validations were carried out on seasonal (monsoon and inter-monsoon) and annual basis. The third-order Markov chain of the TCRG was found to perform better in simulating the rainfall occurrence and preserving the low-frequency variability of the wet spells. The log-normal distribution of the TCRG was consistently better in modelling the rainfall amounts. Both models tend to underestimate the skewness and kurtosis coefficient of the rainfall. The spectral correction approach adopted in the TCRG successfully preserved the seasonal and inter-annual variabilities of rainfall amounts, whereas the MV-WG tends to underestimate the variability bias of rainfall amounts. Overall, the TCRG performed reasonably well in the Kelantan River Basin, as it can represent the key statistics of rainfall occurrence and amounts successfully, as well as the low-frequency variability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  2. Bernardara P, De Michele C, Rosso R (2007) A simple model of rain in time: an alternating renewal process of wet and dry states with a fractional (non-Gaussian) rain intensity. Atmos Res 84:291–301. doi:10.1016/j.atmosres.2006.09.001

    Article  Google Scholar 

  3. Breinl K, Turkington T, Stowasser M (2013) Stochastic generation of multi-site daily precipitation for applications in risk management. J Hydrol 498:23–35. doi:10.1016/j.jhydrol.2013.06.015

    Article  Google Scholar 

  4. Cantet P, Bacro J-N, Arnaud P (2011) Using a rainfall stochastic generator to detect trends in extreme rainfall. Stoch Environ Res Risk Assess 25:429–441. doi:10.1007/s00477-010-0440-x

    Article  Google Scholar 

  5. Castellvi F, Stockle CO, Mormeneo I, Villar JM (2002) Testing the performance of different processes to generate temperature and solar radiation: a case study at Lleida (northeast Spain). Trans ASAE 45:571–580. doi:10.13031/2013.8936

    Article  Google Scholar 

  6. Chandra R, Saha U, Mujumdar PP (2015) Model and parameter uncertainty in IDF relationships under climate change. Adv Water Resour 79:127–139. doi:10.1016/j.advwatres.2015.02.011

    Article  Google Scholar 

  7. Chen J, Brissette FP (2014) Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. Int J Climatol 34:3089–3105. doi:10.1002/joc.3896

    Article  Google Scholar 

  8. Chen J, Zhang XC, Liu WZ, Li Z (2009) Evaluating and extending cligen precipitation generation for the Loess Plateau of China. J Am Water Resour Assoc 45:378–396. doi:10.1111/j.1752-1688.2008.00296.x

    Article  Google Scholar 

  9. Chen J, Brissette FP, Leconte R (2010) A daily stochastic weather generator for preserving low-frequency of climate variability. J Hydrol 388:480–490. doi:10.1016/j.jhydrol.2010.05.032

    Article  Google Scholar 

  10. Chen J, Brissette FP, Leconte R (2012a) WeaGETS—a Matlab-based daily scale weather generator for generating precipitation and temperature. Proc Environ Sci 13:2222–2235. doi:10.1016/j.proenv.2012.01.211

    Article  Google Scholar 

  11. Chen J, Brissette FP, Leconte R, Caron A (2012b) A versatile weather generator for daily precipitation and temperature. Trans ASABE 55:895–906

    Article  Google Scholar 

  12. Cowden JR, Watkins DW, Mihelcic JR (2008) Stochastic rainfall modeling in West Africa: parsimonious approaches for domestic rainwater harvesting assessment. J Hydrol 361:64–77. doi:10.1016/j.jhydrol.2008.07.025

    Article  Google Scholar 

  13. Deidda R, Marrocu M, Caroletti G, Pusceddu G, Langousis A, Lucarini V, Puliga M, Speranza A (2013) Regional climate models’ performance in representing precipitation and temperature over selected Mediterranean areas. Hydrol Earth Syst Sci 17:5041–5059. doi:10.5194/hess-17-5041-2013

    Article  Google Scholar 

  14. Dlamini NS, Rowshon MK, Sahab U, Fikri A, Lai SH, Mohd MSF (2015) Developing and calibrating a stochastic rainfall generator model for simulating daily rainfall by Markov chain approach. J Teknol 76:13–19. doi:10.11113/jt.v76.5946

    Google Scholar 

  15. Dubrovský M, Buchtele J, Žalud Z (2004) High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Clim Change 63:145–179. doi:10.1023/B:CLIM.0000018504.99914.60

    Article  Google Scholar 

  16. Fodor N, Dobi I, Mika J, Szeidl L (2010) MV-WG: a new multi-variable weather generator. Meteorol Atmos Phys 107:91–101. doi:10.1007/s00703-010-0074-z

    Article  Google Scholar 

  17. Fodor N, Dobi I, Mika J, Szeidl L (2013) Applications of the MVWG multivariable stochastic weather generator. Sci World J 2013:1–6. doi:10.1155/2013/571367

    Article  Google Scholar 

  18. Furrer EM, Katz RW (2008) Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour Res 44:1–13. doi:10.1029/2008WR007316

    Article  Google Scholar 

  19. Gronewold AD, Stow CA, Crooks JL, Hunter TS (2013) Quantifying parameter uncertainty and assessing the skill of exponential dispersion rainfall simulation models. Int J Climatol 33:746–757. doi:10.1002/joc.3469

    Article  Google Scholar 

  20. Hansen JW, Mavromatis T (2001) Correcting low-frequency variability bias in stochastic weather generators. Agric For Meteorol 109:297–310. doi:10.1016/S0168-1923(01)00271-4

    Article  Google Scholar 

  21. Harrison M, Waylen P (2000) A note concerning the proper choice for Markov model order for daily precipitation in the humid tropics: a case study in Costa Rica. Int J Climatol 20:1861–1872. doi:10.1002/1097-0088(20001130)20:14<1861:AID-JOC577>3.0.CO;2-9

    Article  Google Scholar 

  22. Harrold TI (2003) A nonparametric model for stochastic generation of daily rainfall amounts. Water Resour Res 39:1343. doi:10.1029/2003WR002570

    Google Scholar 

  23. Hasan MM, Dunn PK (2010) A simple Poisson–gamma model for modelling rainfall occurrence and amount simultaneously. Agric For Meteorol 150:1319–1330. doi:10.1016/j.agrformet.2010.06.002

    Article  Google Scholar 

  24. Hassan Z, Harun S (2013) Impact of climate change on rainfall over Kerian, Malaysia with Long Ashton Research Station Weather Generator (LARS-WG). Malays J Civ Eng 25:33–44

    Google Scholar 

  25. Hauser T, Demirov E (2013) Development of a stochastic weather generator for the sub-polar North Atlantic. Stoch Environ Res Risk Assess 27:1533–1551. doi:10.1007/s00477-013-0688-z

    Article  Google Scholar 

  26. Hong N-M, Lee T-Y, Chen Y-J (2016) Daily weather generator with drought properties by copulas and standardized precipitation indices. Environ Monit Assess 188:383. doi:10.1007/s10661-016-5395-z

    Article  Google Scholar 

  27. Huang YF, Puah YJ, Chua KC, Lee TS (2015) Analysis of monthly and seasonal rainfall trends using the Holt’s test. Int J Climatol 35:1500–1509. doi:10.1002/joc.4071

    Article  Google Scholar 

  28. Jaafar J, Baki A, Abu Bakar IA, Tahir W, Awang H, Ismail F (2016) Evaluation of stochastic daily rainfall data generation models. In: Tahir W, Abu Bakar PIDSH, Wahid MA, Mohd Nasir SR, Lee WK (eds) ISFRAM 2015. Springer, Singapore, pp 203–220

    Google Scholar 

  29. Jones PG, Thornton PK (1993) A rainfall generator for agricultural applications in the tropics. Agric For Meteorol 63:1–19. doi:10.1016/0168-1923(93)90019-E

    Article  Google Scholar 

  30. Jones PG, Thornton PK (2000) MarkSim: software to generate daily weather data for Latin America and Africa. Agron J 92:445–453. doi:10.2134/agronj2000.923445x

    Article  Google Scholar 

  31. Jones PG, Thornton PK (2013) Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric Syst 114:1–5. doi:10.1016/j.agsy.2012.08.002

    Article  Google Scholar 

  32. Kaczmarska J, Isham V, Onof C (2014) Point process models for fine-resolution rainfall. Hydrol Sci J 59:1972–1991. doi:10.1080/02626667.2014.925558

    Article  Google Scholar 

  33. Kannan SK, Farook JA (2015) Stochastic simulation of precipitation using markov chain—mixed exponential model methodology precipitation occurrence. Appl Math Sci 9:3205–3212. doi:10.12988/ams.2015.54308

    Google Scholar 

  34. Katz RW, Parlange MB (1998) Overdispersion phenomenon in stochastic modeling of precipitation. J Clim 11:591–601. doi:10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2

    Article  Google Scholar 

  35. Khazaei MR, Ahmadi S, Saghafian B, Zahabiyoun B (2013) A new daily weather generator to preserve extremes and low-frequency variability. Clim Change 119:631–645. doi:10.1007/s10584-013-0740-5

    Article  Google Scholar 

  36. Kim T-W, Ahn H, Chung G, Yoo C (2008) Stochastic multi-site generation of daily rainfall occurrence in south Florida. Stoch Environ Res Risk Assess 22:705–717. doi:10.1007/s00477-007-0180-8

    Article  Google Scholar 

  37. Kim Y, Katz RW, Rajagopalan B, Podesta GP, Furrer EM (2012) Reducing overdispersion in stochastic weather generators using a generalized linear modeling approach. Clim Res 53:13–24. doi:10.3354/Cr01071

    Article  Google Scholar 

  38. Kyselý J, Dubrovský M (2005) Simulation of extreme temperature events by a stochastic weather generator: effects of interdiurnal and interannual variability reproduction. Int J Climatol 25:251–269. doi:10.1002/joc.1120

    Article  Google Scholar 

  39. Langousis A, Kaleris V (2014) Statistical framework to simulate daily rainfall series conditional on upper-air predictor variables. Water Resour Res 50:3907–3932. doi:10.1002/2013WR014936

    Article  Google Scholar 

  40. Langousis A, Mamalakis A, Deidda R, Marrocu M (2015) Assessing the relative effectiveness of statistical downscaling and distribution mapping in reproducing rainfall statistics based on climate model results. Water Resour Res. doi:10.1002/2015WR017556

    Google Scholar 

  41. Lewis CD (1982) Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth Scientific, London

    Google Scholar 

  42. Li C, Singh VP, Mishra AK (2013) A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour Res 49:767–789. doi:10.1002/wrcr.20063

    Article  Google Scholar 

  43. Liu Y, Zhang W, Shao Y, Zhang K (2011) A comparison of four precipitation distribution models used in daily stochastic models. Adv Atmos Sci 28:809–820. doi:10.1007/s00376-010-9180-6

    CAS  Article  Google Scholar 

  44. Lu Y, Qin XS, Mandapaka PV (2015) A combined weather generator and K-nearest-neighbour approach for assessing climate change impact on regional rainfall extremes. Int J Climatol 35:4493–4508. doi:10.1002/joc.4301

    Article  Google Scholar 

  45. Mandal KG, Padhi J, Kumar A, Ghosh S, Panda DK, Mohanty RK, Raychaudhuri M (2014) Analyses of rainfall using probability distribution and Markov chain models for crop planning in Daspalla region in Odisha, India. Theor Appl Climatol 121:517–528. doi:10.1007/s00704-014-1259-z

    Article  Google Scholar 

  46. Mason SJ (2004) Simulating climate over western North America using stochastic weather generators. Clim Change 62:155–187. doi:10.1023/B:CLIM.0000013700.12591.ca

    Article  Google Scholar 

  47. Mayowa OO, Pour SH, Shahid S, Mohsenipour M, Harun SB, Heryansyah A, Ismail T (2015) Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. J Earth Syst Sci 124:1609–1622. doi:10.1007/s12040-015-0639-9

    Article  Google Scholar 

  48. Mehrotra R, Sharma A (2007) Preserving low-frequency variability in generated daily rainfall sequences. J Hydrol 345:102–120. doi:10.1016/j.jhydrol.2007.08.003

    Article  Google Scholar 

  49. Paschalis A, Molnar P, Fatichi S, Burlando P (2014) On temporal stochastic modeling of precipitation, nesting models across scales. Adv Water Resour 63:152–166. doi:10.1016/j.advwatres.2013.11.006

    Article  Google Scholar 

  50. Peck Yen T, Rohasliney H (2013) Status of water quality subject to sand mining in the Kelantan River, Kelantan. Trop Life Sci Res 24:19–34

    Google Scholar 

  51. Pour S, Harun S, Shahid S (2014) Genetic programming for the downscaling of extreme rainfall events on the East Coast of Peninsular Malaysia. Atmosphere (Basel) 5:914–936. doi:10.3390/atmos5040914

    Article  Google Scholar 

  52. Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9:1–18

    Google Scholar 

  53. Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Modell 57:27–41. doi:10.1016/0304-3800(91)90053-4

    Article  Google Scholar 

  54. Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Boca Raton

    Google Scholar 

  55. Schoof JT, Arguez A, Brolley J, O’Brien JJ (2005) A new weather generator based on spectral properties of surface air temperatures. Agric For Meteorol 135:241–251. doi:10.1016/j.agrformet.2005.12.004

    Article  Google Scholar 

  56. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  57. Semenov MA, Brooks RJ (1999) Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Clim Res 11:137–148. doi:10.3354/cr011137

    Article  Google Scholar 

  58. Semenov MA, Brooks RJ, Barrow EM, Richardson CW (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10:95–107. doi:10.3354/cr010095

    Article  Google Scholar 

  59. Serinaldi F, Kilsby CG (2014) Simulating daily rainfall fields over large areas for collective risk estimation. J Hydrol 512:285–302. doi:10.1016/j.jhydrol.2014.02.043

    Article  Google Scholar 

  60. Sharma MA, Singh JB (2010) Use of probability distribution in rainfall analysis. New York Sci J 3:40–49

    Google Scholar 

  61. Shui LT, Haque A (2004) Stochastic rainfall model for irrigation projects. Pertanika J Sci Technol 12:137–147

    Google Scholar 

  62. So BJ, Kwon HH, Kim D, Lee SO (2015) Modeling of daily rainfall sequence and extremes based on a semiparametric Pareto tail approach at multiple locations. J Hydrol 529:1442–1450. doi:10.1016/j.jhydrol.2015.08.037

    Article  Google Scholar 

  63. Sonnadara DUJ, Jayewardene DR (2014) A Markov chain probability model to describe wet and dry patterns of weather at Colombo. Theor Appl Climatol 119:333–340. doi:10.1007/s00704-014-1117-z

    Article  Google Scholar 

  64. Srikanthan R, Harrold TI, Sharma A, McMahon TA (2005) Comparison of two approaches for generation of daily rainfall data. Stoch Environ Res Risk Assess 19:215–226. doi:10.1007/s00477-004-0226-0

    Article  Google Scholar 

  65. Suhaila J, Deni SM, Zin WZW, Jemain AA (2010) Trends in Peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975–2004. Sains Malays 39:533–542. doi:10.1007/s00703-010-0108-6

    Google Scholar 

  66. Sundaresan J, Sreekesh S, Ramanathan AL, Sonnenschein L, Boojh R (eds) (2013) Climate change and island and coastal vulnerability. Springer, Netherlands

    Google Scholar 

  67. Swanson DA, Tayman J, Bryan TM (2011) MAPE-R: a rescaled measure of accuracy for cross-sectional subnational population forecasts. J Popul Res 28:225–243. doi:10.1007/s12546-011-9054-5

    Article  Google Scholar 

  68. Tangang FT, Juneng L, Salimun E, Sei KM, Le LJ (2012) Climate change and variability over Malaysia: gaps in science and research information. Sains Malaysiana 41:1355–1366

    Google Scholar 

  69. Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess 29:1149–1165. doi:10.1007/s00477-015-1021-9

    Article  Google Scholar 

  70. Tingem M, Rivington M, Azam-Ali S, Colls J (2007) Assessment of the ClimGen stochastic weather generator at Cameroon sites. Afr J Environ Sci Technol 1:86–92

    Google Scholar 

  71. Varikoden H, Samah AA, Babu CA (2010) Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate. J Hydrol 387:312–319. doi:10.1016/j.jhydrol.2010.04.023

    Article  Google Scholar 

  72. Varikoden H, Preethi B, Samah AA, Babu CA (2011) Seasonal variation of rainfall characteristics in different intensity classes over Peninsular Malaysia. J Hydrol 404:99–108. doi:10.1016/j.jhydrol.2011.04.021

    Article  Google Scholar 

  73. Wan H, Zhang X, Barrow EM (2005) Stochastic modelling of daily precipitation for Canada. Atmos Ocean 43:23–32. doi:10.3137/ao.430102

    Article  Google Scholar 

  74. Wang QJ, Nathan RJ (2007) A method for coupling daily and monthly time scales in stochastic generation of rainfall series. J Hydrol 346:122–130. doi:10.1016/j.jhydrol.2007.09.003

    Article  Google Scholar 

  75. Wheater HS, Chandler RE, Onof CJ, Isham VS, Bellone E, Yang C, Lekkas D, Lourmas G, Segond M-L (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19:403–416. doi:10.1007/s00477-005-0011-8

    Article  Google Scholar 

  76. Wilks DS (1999) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93:153–169. doi:10.1016/S0168-1923(98)00125-7

    Article  Google Scholar 

  77. Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr 23:329–357. doi:10.1177/030913339902300302

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to the Malaysian Meteorological Department (MMD) for providing the rainfall data and to the Ministry of Education Malaysia (MOE) for the financial support. The authors also would like to acknowledge the sincere appreciation to the reviewers for their valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Lin Ng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ng, J., Abd Aziz, S., Huang, Y. et al. Stochastic modelling of seasonal and yearly rainfalls with low-frequency variability. Stoch Environ Res Risk Assess 31, 2215–2233 (2017). https://doi.org/10.1007/s00477-016-1373-9

Download citation

Keywords

  • Stochastic rainfall model
  • Low-frequency variability
  • TCRG
  • MV-WG
  • Tropical climate