Skip to main content

Advertisement

Log in

Intercomparison of multiple statistical downscaling methods: multi-criteria model selection for South Korea

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A number of statistical downscaling methodologies have been introduced to bridge the gap in scale between outputs of climate models and climate information needed to assess potential impacts at local and regional scales. Four statistical downscaling methods [bias-correction/spatial disaggregation (BCSD), bias-correction/constructed analogue (BCCA), multivariate adaptive constructed analogs (MACA), and bias-correction/climate imprint (BCCI)] are applied to downscale the latest climate forecast system reanalysis (CFSR) data to stations for precipitation, maximum temperature, and minimum temperature over South Korea. All methods are calibrated with observational station data for 19 years from 1973 to 1991 and validated for the more recent 19-year period from 1992 to 2010. We construct a comprehensive suite of performance metrics to inter-compare methods, which is comprised of five criteria related to time-series, distribution, multi-day persistence, extremes, and spatial structure. Based on the performance metrics, we employ technique for order of preference by similarity to ideal solution (TOPSIS) and apply 10,000 different weighting combinations to the criteria of performance metrics to identify a robust statistical downscaling method and important criteria. The results show that MACA and BCSD have comparable skill in the time-series related criterion and BCSD outperforms other methods in distribution and extremes related criteria. In addition, MACA and BCCA, which incorporate spatial patterns, show higher skill in the multi-day persistence criterion for temperature, while BCSD shows the highest skill for precipitation. For the spatial structure related criterion, BCCA and MACA outperformed BCSD and BCCI. From the TOPSIS analysis, we found that MACA is the most robust method for all variables in South Korea, and BCCA and BCSD are the second for temperature and precipitation, respectively. We also found that the contribution of the multi-day persistence and spatial structure related criteria are crucial to ranking the skill of statistical downscaling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abatzoglou JT, Brown TJ (2011) A comparison of statistical downscaling methods suited for wildfire applications. Int J Climatol 32:772–780. doi:10.1002/joc.2312

    Article  Google Scholar 

  • Bardossy A, Bogardi I, Matyasovszky I (2005) Fuzzy rule-based downscaling of precipitation. Theor Appl Climatol 82:119–129

    Article  Google Scholar 

  • Brekke LD, Kiang JE, Olsen JR, Pulwarty RS, Raff DA, Turnipseed DP, Webb RS, White KD (2009) Climate change and water resources management: a federal perspective: U.S. Geological Survey Circular 1331, 65 p

  • Brown C, Ghile Y, Laverty M, Li K (2012) Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour Res 48:W09537

    Article  Google Scholar 

  • Bürger G, Murdock TQ, Werner AT, Sobie SR, Cannon AJ (2013) Downscaling extremes—an intercomparison of multiple statistical methods for present climate. J Clim 25(12):4366–4388

    Article  Google Scholar 

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959. doi:10.1175/JCLI-D-14-00754.1

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401:190–202

    Article  Google Scholar 

  • Cherubini T, Ghelli A, Lalaurette F (2002) Verification of precipitation forecasts over the Alpine region using a high-density observing network. Weather Forecast 17:238–249

    Article  Google Scholar 

  • Christensen N, Lettenmaier DP (2007) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol Earth Syst Sci 11:1417–1434

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(Suppl 1):1–6

    Article  Google Scholar 

  • Chu TC (2002) Selecting plant location via a fuzzy TOPSIS approach. Int J Adv Manuf Technol 20(11):859–864

    Article  Google Scholar 

  • Chung ES, Lee GS (2009) Identification of spatial ranking of hydrological vulnerability using multi-criteria decision making techniques: case study of Korea. Water Resour Manag 23:2395–2416

    Article  Google Scholar 

  • Demirel MC, Moradkhani H (2016) Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing. Clim Change 135:357–372

    Article  Google Scholar 

  • Deque M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellstrom E, Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2006) Temporal neural networks for downscaling climate variability and extremes. Neural Netw 19:135–144

    Article  Google Scholar 

  • Diez E, Primo C, Garcia-Moya JA, Gutierrez JM, Orfila B (2005) Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus Ser A 57:409–423

    Article  Google Scholar 

  • Eum H-I, Simonovic SP (2012) Assessment on variability of extreme climate events for the Upper Thames River basin in Canada. Hydrol Process 26:485–499. doi:10.1002/hyp.8145

    Article  Google Scholar 

  • Eum H-I, Simonovic SP, Kim Y-O (2010) Climate change impact assessment using k-nearest neighbor weather generator: case study of the Nakdong River basin in Korea. J Hydrol Eng 15(10):772–785

    Article  Google Scholar 

  • Eum H-I, Kim Y-O, Palmer RN (2011) Optimal drought management using sampling stochastic dynamic programming with a hedging rule. J Water Resour Plan Manag 137(1):113–122

    Article  Google Scholar 

  • Eum H-I, Gachon P, Laprise R (2016) Impacts of model bias on the climate change signal and effects of weighted ensembles of regional climate model simulations: a case study over Southern Québec, Canada. Adv Meteorol 2016:1–17

    Article  Google Scholar 

  • Fasbender D, Ouarda TBMJ (2010) Spatial Bayesian model for statistical downscaling of AOGCM to minimum and maximum daily temperatures. J Clim 23:5222–5242. doi:10.1175/2010JCLI3415.1

    Article  Google Scholar 

  • Fernández J, Sáenz J (2003) Improved field reconstruction with the analog method: searching the CCA space. Clim Res 24:199–213

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Garvey PR (2008) Analytical methods for risk management: a system engineering perspective. CRC Press, Boca Raton, pp 243–250

    Google Scholar 

  • Goodess CM, Anagnostopoulou C, Bardossy A, Frei C, Harpham C, Haylock MR, Hundecha Y, Maheras P, Ribalaygua J, Schmidli J, Schmith T, Tolika K, Tomozeiu R, Wilby RL (2012) An intercomparison of statistical downscaling methods for Europe and European regions-assessing their performance with respect to extreme temperature and precipitation events. Climate Research Unit Research Publication 11 (CRU RP11)

  • Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, Rasmussen RM (2014) An intercomparison of statistical downscaling methods used for water resources assessments in the United States. Water Resour Res 50:7167–7186. doi:10.1002/2014WR015559

    Article  Google Scholar 

  • Hanson RT, Lockwood B, Schmid W (2014) Analysis of projected water availability with current basin management plan, Pajaro Valley, California. J Hydrol 519(A):131–147

    Article  Google Scholar 

  • Hay L, LaFontaine J, Markstrom S (2014) Evaluation of statistically downscaled GCM output as input for hydrological and stream temperature simulation in the Alalachicola-hattahoochee-Flint River Basin (1961–1999). Earth Interact 18:1–32. doi:10.1175/2013EI000554.1

    Article  Google Scholar 

  • Hayhoe, KA (2010) A standardized framework for evaluating the skill of regional climate downscaling techniques. University of Illinois at Urbana-Champaign

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26:1397–1415

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction-the ISI-MIP approach. Earth Syst Dyn 4(2):219–236

    Article  Google Scholar 

  • Hidalgo H, Dettinger M, Cayan D (2008) Downscaling with constructed analogues: daily precipitation and temperature fields over the United States, Rep. CEC-500-2007-123, Calif. Energy Comm., PIER Energy-Related Environ. Res., Sacramento, CA

  • Hong KO, Suh MS, Rha DK, Chang DH, Kim C, Kim MK (2007) Estimation of high resolution gridded temperature using GIS and PRISM. Atmosphere 17:255–268 (in Korean)

    Google Scholar 

  • Hunter RD, Meetemeyer RK (2005) Climatologically aided mapping of daily precipitation and temperature. J Appl Meteorol 44:1501–1510

    Article  Google Scholar 

  • Hwang S, Graham WD (2013) Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrol Earth Syst Sci Discuss 10:2141–2181. doi:10.5194/hessd-10-2141-2013

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applicasions. Springer, New York

    Book  Google Scholar 

  • Jenkins G, Lowe J (2003) Handling uncertainties in the UKCIP02 scenarios of climate change. Hadley Centre Technical Note 44, Exeter

  • Jun K-S, Chung E-S, Kim Y-G, Kim Y (2013) A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Syst Appl 40:1003–1013

    Article  Google Scholar 

  • Kim Y, Chung E-S (2014) An index-based robust decision making framework for watershed management in a changing climate. Sci Total Environ 473–474:88–102

    Article  Google Scholar 

  • Kim B, Kim HS, Seoh BH, Kim NW (2007) Impact of climate change on water resources in Yongdam Dam basin, Korea. Stoch Environ Res Risk Assess 21:457. doi:10.1007/s00477-006-0081-2

    Article  CAS  Google Scholar 

  • Kim JP, Lee W-S, Cho H, Kim G (2014) Estimation of high resolution daily precipitation using a modified PRSM model. J Korean Soc Civil Eng 34(4):1139–1150

    Article  Google Scholar 

  • Lapen DR, Hayhoe HN (2003) Spatial analysis of seasonal and annual temperature and precipitation normals in Southern Ontario, Canada. J Great Lakes Res 29(4):529–544

    Article  Google Scholar 

  • Lee G, Jun K-S, Chung E-S (2013) Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Nat Hazards Earth Syst Sci 13:1293–1312

    Article  Google Scholar 

  • Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res 115:D10101. doi:10.1029/2009JD012882

    Article  Google Scholar 

  • Liu W, Xu Z, Zhang L, Zhao J, Yang H (2015) Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin. Stoch Envrion Res Risk Assess 29:1809–1822

    Article  Google Scholar 

  • Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646

    Article  Google Scholar 

  • Maloney ED, Camargo SJ, Chang E, Colle BC, Fu R, Geil KL, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kinter J, Kirtman B, Kumar S, Langenbrunner B, Lombardo K, Long LN, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Pan Z, Seager R, Serra Y, Seth A, Sheffield J, Stroeve J, Thibeault J, Xie S-P, Wang C, Wyman B, Zhao M (2014) North American climate in CMIP5 experiments: part III: assessment of twenty-first century projections. J Clim 27:2230–2270

    Article  Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26(6):2137–2143

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48. doi:10.1029/2009RG000314

  • Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12:551–563

    Article  Google Scholar 

  • Maurer EP, Pierce DW (2014) Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol Earth Syst Sci 18(3):915–925

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG, Das T (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14:1125–1138. doi:10.5194/hess-14-1125-2010

    Article  Google Scholar 

  • Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteorol Soc 93(9):1337–1362

    Article  Google Scholar 

  • Miller WP, DeRosa GM, Gangopadhyay S, Valdés JB (2013) Predicting regime shifts in flow of the Gunnison River under changing climate conditions: regime shifts over the Gunnison River basin. Water Resour Res 49:2966–2974. doi:10.1002/wrcr.20215

    Article  Google Scholar 

  • Mizukami N, Clark MP, Gutmann ED, Mendoza PA, Newman AJ, Nijssen B, Livneh B, Hay LE, Arnold JR, Brekke LD (2016) Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: statistically downscaled forcing data and hydrologic models. J Hydrometeorol 17(1):73–98. doi:10.1175/JHM-D-14-0187.1

    Article  Google Scholar 

  • Mizuta R, Oouchi K, Yoshimura H, Noda A, Katayama K, Yukimoto S, Hosaka M, Kusunoki S, Kawai H, Nakagawa M (2006) 20-km-mesh global climate simulations using JMA–GSM model—mean climate states. J Meteorol Soc Jpn 84:165–185

    Article  Google Scholar 

  • Murdock TQ, Cannon AJ, Sobie SR (2013) Statistical downscaling of future climate projections. Pacific Climate Impacts Consortium (PCIC) Report (No.KM170-12-1236)

  • Nicholas RE, Battisti DS (2012) Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J Appl Meteorol Climatol 51:100–114. doi:10.1175/JAMC-D-11-04.1

    Article  Google Scholar 

  • Olsson J, Uvo C, Jinno K (2001) Statistical atmospheric downscaling of short-term extreme rainfall by neural networks. Phys Chem Earth 26B:695–700

    Article  Google Scholar 

  • Ozturk D, Batuk F (2011) Technique for order preference by similarity to ideal solution (TOPSIS) for spatial decision problems. Proceedings of Gi4DM 2011, Antalya, Turkey

  • Rana A, Moradkhani H (2016) Spatial, temporal and frequency based climate change assessment in Columbia River basin using multi downscaled-scenarios. Clim Dyn 47(1–2):579–600. doi:10.1007/s00382-015-2857-x

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y-T, Chuang H-Y, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J-K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C-Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Salathé EP, Mote PW, Wiley MW (2007) Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int J Climatol 27:1611–1621

    Article  Google Scholar 

  • Segui PQ, Rebies A, Martin E, Habets F, Boe J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383:111–124

    Article  Google Scholar 

  • Shin SC, Kim MK, Suh MS, Rha DK, Jang DH, Kim CS, Lee WS, Kim YH (2008) Estimation of high resolution gridded precipitation using GIS and PRISM. Atmospheres 18:71–81 (in Korean)

    Google Scholar 

  • Sillmann J, Kharin V, Zhang X, Zwiers F, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118(4):1716–1733

    Article  Google Scholar 

  • Stoner A, Hayhoe K, Yang X (2013) An asynchronous regional regression model for statistical downscaling of daily climate variables. Int J Climatol 33:2473–2494. doi:10.1002/joc.3603

    Article  Google Scholar 

  • Thrasher B, Maurer EP, McKellar C, Duffy P (2012) Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16:3309–3314. doi:10.5194/hess-16-3309-2012

    Article  Google Scholar 

  • Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems. Springer, Netherlands

    Book  Google Scholar 

  • Timbal B, Dufour A, McAvaney B (2003) An estimate of future climate change for western France using a statistical downscaling technique. Clim Dyn 20:807–823

    Google Scholar 

  • Triantaphyllou E (2000) Multi-criteria decision making methods. Springer, US

    Book  Google Scholar 

  • van den Dool HM (1994) Searching for analogues, how long must one wait? Tellus Ser A 46:314–324

    Article  Google Scholar 

  • van den Dool H, Huang J, Fan Y (2003) Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. J Geophys Res 108(D16)

  • Werner AT, Cannon AJ (2016) Hydrologic extremes—an intercomparison of multiple gridded statistical downscaling methods. Hydrol Earth Syst Sci 20(4):1483–1508. doi:10.5194/hess-20-1483-2016

    Article  Google Scholar 

  • Werner AT, Schnorbus MA, Shrestha RR, Eckstrand HD (2013) Spatial and temporal change in the hydro-climatology of the Canadian portion of the Columbia River basin under multiple emissions scenarios. Atmos Ocean 51(4):357–379

    Article  CAS  Google Scholar 

  • Wilby R, Wigley T, Conway D, Jones P, Hewitson B, Main J, Wilks D (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008. doi:10.1029/98WR02577

    Article  Google Scholar 

  • Wilby RL, Hay LE, Gutowski WJ, Arritt RW, Takle ES, Pan Z, Leavesley GH, Clark MP (2000) Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett 27(8):1199–1202. doi:10.1029/L006078

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2(6):851–870. doi:10.1002/wcc.147

    Article  Google Scholar 

  • Zhou YG, Wen JJ, Chen DW (2012) Study on the competitive and layout of commercial pedestrian streets’ business forms though IEW & TOPSIS- two comparative cases in Hangzhou. J Zhejiang Univ Sci 39(6):724–731

    Google Scholar 

Download references

Acknowledgments

This research was supported by the APEC Climate Center (APCC) and partially by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by the Ministry of Land, Infrastructure and Transport of Korean government. The authors would like to thank Pacific Climate Impacts Consortium and APEC Climate Center for approving visiting research and their valuable comments and suggestions on earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Il Eum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eum, HI., Cannon, A.J. & Murdock, T.Q. Intercomparison of multiple statistical downscaling methods: multi-criteria model selection for South Korea. Stoch Environ Res Risk Assess 31, 683–703 (2017). https://doi.org/10.1007/s00477-016-1312-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1312-9

Keywords

Navigation