Abstract
In this paper, we address the problem of getting order statistics for georeferenced functional data by means of depth functions. To reach this aim, we introduce the concept of spatial dispersion function for functional data in a specific location of the geographic space. Then we generalize the notion of modified half-region depth to spatial dispersion functions. Through the use of spatial dispersion functions we show how the data ordering criterion depends not only on the functional but also on the spatial component. The proposal is applied to two wide simulation studies and to real data coming from sensors.














Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Albertos-Cuesta JA, Nieto-Rayes A (2008) The random Tukey depth. Comput Stat Data Anal 52(11):4979–4988
Balzanella A, Elvira R (2015) A depth function for geostatistical functional data. In: Morlini I, Minerva T, Vichi M (eds) Advances in statistical models for data analysis, Springer International Publishing, pp 9–16. doi:10.1007/978-3-319-17377-1_2
Bohorquez M, Giraldo R, Mateu J (2016) Optimal sampling for spatial prediction of functional data. Stat Methods Appl 25(1):3954
Bohorquez M, Giraldo R, Mateu J (2016) Multivariate functional random fields: prediction and optimal sampling. Stoch Environ Res Risk Assess 1–18. doi:10.1007/s00477-016-1266-y
Chakraborty A, Chaudhuri P (2014) On data depth in infinite dimensional spaces. Annal Inst Stat Math 66(2):303–324
Claeskens G, Hubert M, Slaets L, Vakili K (2014) Multivariate functional halfspace depth. J Am Stat Assoc 109:411–423
Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data via projection-based depth notions. Comput Stat 22:481–496
Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetric 21:224–239
Delicado P, Giraldo R, Comas C, Mateu J (2010) Spatial statistics for functional data: some recent contributions. Environmetrics 21:224–239
Dyckerhoff R (2002) Data depths satisfying the projection property. Adv Stat Anal 88:163–190
Ferraty F, Vieu P (2006) Nonparametric functional data analysis theory and practice. Springer, New York
Fraiman R, Muniz G (2001) Trimmed means for functional data. Test 10:419–440
Journel AG, Huijbregts Ch J (2004) Mining geostatistics. The Blackburn Press, Caldwell
Liu R (1990) On a notion of data depth based on random simplices. Annal Stat 18:405–414
Lopez-Pintado S, Romo J (2009) On the concept of depth for functional data. J Am Stat Assoc 104:718–734
Lopez-Pintado S, Romo J (2011) A half-region depth for functional data. Comput Stat Data Anal 55(4):1679–1695
Mosler K (2002) Multivariate dispersion, central regions and depth: the Lift Zonoid approach. Springer, New York
Nieto-Reyes A, Battey H (2016) A topologically valid definition of depth for functional data. Stat Sci 31:61–79
Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York
Romano E, Mateu J, Giraldo R (2015) On the performance of two clustering methods for spatial functional data. AStA Adv Stat Anal 99(4):467–492
Romano E, Balzanella A, Verde R (2016) Spatial variability clustering for spatially dependent functional data. Stat Comput 1–14. doi:10.1007/s11222-016-9645-2
Sun Y, Genton MG (2011) Functional boxplots. J Comput Graph Stat 20:316–334
Tukey J (1975) Mathematics and picturing data. In: Proceedings of the 1975 International Congress of Mathematics. 2, 523–531
Zuo Y, Serfling R (2000) General notions of statistical depth function. Annal Stat 28:461–482
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Balzanella, A., Romano, E. & Verde, R. Modified half-region depth for spatially dependent functional data. Stoch Environ Res Risk Assess 31, 87–103 (2017). https://doi.org/10.1007/s00477-016-1291-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00477-016-1291-x


