Skip to main content
Log in

Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regression classifier into as many probability fields as there are categories. The local category proportions are used and compared to the average category probabilities within the patch. The conditioning to HD is obtained using alternative training images and by imposing large relative weights to HD. The conditioning to soft data is obtained by measuring the probability–proportion patch distance. Both 2D and 3D cases are considered. Synthetic cases show that a stationary TI can generate non-stationary realizations reproducing the HD, keeping the texture indicated by the TI and following the trends identified in probability maps obtained from soft data. A real case study, the Mallik methane-hydrate field, shows perfect reproduction of HD while keeping a good reproduction of the TI texture and probability trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Al-Mudhafer WJ et al (2014) Multinomial logistic regression for bayesian estimation of vertical facies modeling in heterogeneous sandstone reservoirs. In: Offshore Technology Conference-Asia, Offshore Technology Conference

  • Almeida AS, Tran T, Ballin PR (1993) An integrated approach to reservoir studies using stochastic simulation techniques. In: Soares A (ed) Geostatistics Troia’92, pp 371–383

  • Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203

    Article  Google Scholar 

  • Bellefleur G, Riedel M, Brent T (2006) Seismic characterization and continuity analysis of gas-hydrate horizons near Mallik research wells, Mackenzie Delta, Canada. Lead Edge 25(5):599–604

    Article  Google Scholar 

  • Caers J, Ma X (2002) Modeling conditional distributions of facies from seismic using neural nets. Math Geol 34(2):143–167

    Article  Google Scholar 

  • Chugunova TL, Hu LY (2008) Multiple-point simulations constrained by continuous auxiliary data. Math Geosci 40(2):133–146

    Article  Google Scholar 

  • Daly C (2005) Higher order models using entropy, markov random fields and sequential simulation. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Berlin, pp 215–224

    Chapter  Google Scholar 

  • de Vries L, Carrera J, Falivene O, Gratacos O, Slooten L (2009) Application of multiple point geostatistics to non-stationary images. Math Geosci 41(1):29–42

    Article  Google Scholar 

  • Dobson AJ, Barnett A (2008) An introduction to generalized linear models. CRC Press, Boca Raton

    Google Scholar 

  • Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35(5):352–359

    Article  Google Scholar 

  • Dubreuil-Boisclair C, Gloaguen E, Bellefleur G, Marcotte D (2012) Non-gaussian gas hydrate grade simulation at the Mallik site, Mackenzie Delta, Canada. Mar Pet Geol 35(1):20–27

    Article  Google Scholar 

  • Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM, pp 341–346

  • El Ouassini A, Saucier A, Marcotte D, Favis BD (2008) A patchwork approach to stochastic simulation: a route towards the analysis of morphology in multiphase systems. Chaos Solitons Fract 36(2):418–436

    Article  Google Scholar 

  • Faucher C, Saucier A, Marcotte D (2013) A new patchwork simulation method with control of the local-mean histogram. Stoch Environ Res Risk Assess 27(1):253–273

    Article  Google Scholar 

  • Faucher C, Saucier A, Marcotte D (2014) Corrective pattern-matching simulations with controlled local-mean histogram. Stoch Environ Res Risk Assess 28(1):2027–2050

    Article  Google Scholar 

  • Fisher SRA, Fisher RA, Genetiker S, Fisher RA, Genetician S, Fisher RA, Généticien S (1960) The design of experiments, vol 12. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Troia’92, vol 5, pp 133–144

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. Bayesian Stat 6(1):761–768

    Google Scholar 

  • Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, vol 398. Wiley, New york

    Book  Google Scholar 

  • Lee SJ (2005) Models of soft data in geostatistics and their application in environmental and health mapping. PhD thesis, University of North Carolina at Chapel Hill

  • Liang M, Marcotte D (2015) A class of non-stationary covariance functions with compact support. Stoch Environ Res Risk Assess. 10.1007/s00477-015-1100-y

  • Lu B, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922

    Article  CAS  Google Scholar 

  • Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of earth textures by conditional image quilting. Water Resour Res 50(4):3088–3107

    Article  Google Scholar 

  • Marcotte D (1996) Fast variogram computation with FFT. Comput Geosci 22(10):1175–1186

    Article  Google Scholar 

  • Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York

    Book  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11):1–14

    Google Scholar 

  • Mariethoz G, Straubhaar J, Renard P, Chugunova T, Biver P (2015) Constraining distance-based multipoint simulations to proportions and trends. Environ Model Softw 72:184–197

    Article  Google Scholar 

  • McFadden D et al (1973) Conditional logit analysis of qualitative choice behavior. University of California, California

    Google Scholar 

  • Paciorek CJ, Schervish MJ (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17(5):483–506

    Article  Google Scholar 

  • Pickard DK (1980) Unilateral markov fields. Adv Appl Probab 12:655–671

    Article  Google Scholar 

  • Pohar M, Blas M, Turk S (2004) Comparison of logistic regression and linear discriminant analysis: a simulation study. Metodoloski zvezki 1(1):143

    Google Scholar 

  • Press SJ, Wilson S (1978) Choosing between logistic regression and discriminant analysis. J Am Stat Assoc 73(364):699–705

    Article  Google Scholar 

  • Rezaee H, Mariethoz G, Koneshloo M, Asghari O (2013) Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Comput Geosci 54:293–308

    Article  Google Scholar 

  • Rezaee H, Asghari O, Koneshloo M, Ortiz J (2014) Multiple-point geostatistical simulation of dykes: application at Sungun Porphyry Copper System, Iran. Stoch Environl Res Risk Assess 28:1913–1927

    Article  Google Scholar 

  • Rezaee H, Marcotte D, Tahmasebi P, Saucier A (2015) Multiple-point geostatistical simulation using enriched pattern databases. Stoch Environ Res Risk Assess 29:893–913

    Article  Google Scholar 

  • Rivest M, Marcotte D (2012) Kriging groundwater solute concentrations using flow coordinates and nonstationary covariance functions. J Hydrol 472:238–253

    Article  Google Scholar 

  • Shamsipour P, Marcotte D, Chouteau M, Rivest M, Bouchedda A (2013) 3D stochastic gravity inversion using nonstationary covariances. Geophysics 78(2):G15–G24

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, Berlin

    Book  Google Scholar 

  • Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Tahmasebi P, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16(3):779–797

    Article  Google Scholar 

  • Tahmasebi P, Sahimi M, Caers J (2014) Ms-ccsim: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in fourier space. Comput Geosci 67:75–88

    Article  Google Scholar 

  • Wong P, Jian F, Taggart I (1995) A critical comparison of neural networks and discriminant analysis in lithofacies, porosity and permeability predictions. J Pet Geol 18(2):191–206

    Article  Google Scholar 

  • Xu W, Tran TT, Srivastava RM, G JA, (1992) Integrating seismic data in reservoir modeling; the collocated cokriging alternative. SPE Annual technical conference and exhibition, Society of Petroleum Engineers, Washington, DC, pp 833–842. 4–7 October

  • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38:63–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express their thanks to C. Dubreuil-Boisclair and E. Gloaguen for providing the data set for real case on Mallik gas hydrate field. Research was partly financed by NSERC (RGPIN-2015-06653). Numerous comments from three anonymous reviewers were helpful in improving significantly the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rezaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, H., Marcotte, D. Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates. Stoch Environ Res Risk Assess 31, 1727–1745 (2017). https://doi.org/10.1007/s00477-016-1277-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1277-8

Keywords

Navigation