Skip to main content
Log in

Fast and direct nonparametric procedures in the L-moment homogeneity test

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Regional frequency analysis is an important tool to properly estimate hydrological characteristics at ungauged or partially gauged sites in order to prevent hydrological disasters. The delineation of homogeneous groups of sites is an important first step in order to transfer information and obtain accurate quantile estimates at the target site. The Hosking–Wallis homogeneity test is usually used to test the homogeneity of the selected sites. Despite its usefulness and good power, it presents some drawbacks including the subjective choice of a parametric distribution for the data and a poorly justified rejection threshold. The present paper addresses these drawbacks by integrating nonparametric procedures in the L-moment homogeneity test. To assess the rejection threshold, three resampling methods (permutation, bootstrap and Pólya resampling) are considered. Results indicate that permutation and bootstrap methods perform better than the parametric Hosking–Wallis test in terms of power as well as in time and procedure simplicity. A real-world case study shows that the nonparametric tests agree with the HW test concerning the homogeneity of the volume and the bivariate case while they disagree for the peak case, but that the assumptions of the HW test are not well respected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates BC, Rahman A, Mein RG, Weinmann PE (1998) Climatic and physical factors that influence the homogeneity of regional floods in southeastern Australia. Water Resour Res 34(12):3369–3381

    Article  Google Scholar 

  • Boos DD, Brownie C (1989) Bootstrap methods for testing homogeneity of variances. Technometrics 31(1):69–82

    Article  Google Scholar 

  • Burn DH, Goel NK (2000) The formation of groups for regional flood frequency analysis. Hydrol Sci J 45(1):97–112

    Article  Google Scholar 

  • Cannarozzo M, Noto LV, Viola F, La Loggia G (2009) Annual runoff regional frequency analysis in Sicily. Phys Chem Earth Parts A/B/C 34(10–12):679–687

    Article  Google Scholar 

  • Castellarin A, Burn DH, Brath A (2008) Homogeneity testing: How homogeneous do heterogeneous cross-correlated regions seem? J Hydrol 360(1–4):67–76

    Article  Google Scholar 

  • Chang R, Wang M (1983) Shifted Legendre direct method for variational problems. J Optim Theory Appl 39(2):299–307

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2007) Multivariate L-moment homogeneity test. Water Resour Res 43(8):W08406

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2008) Depth and homogeneity in regional flood frequency analysis. Water Resour Res 44(11):W11422

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2009) Index flood–based multivariate regional frequency analysis. Water Resour Res 45(10):W10435

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2011) Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1):63–78

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ, Bruneau P, Barbet M, El Adlouni S, Latraverse M (2009) Multivariate homogeneity testing in a northern case study in the province of Quebec, Canada. Hydrol Process 23(12):1690–1700

    Article  Google Scholar 

  • Chérif R, Bargaoui Z (2013) Regionalisation of maximum annual runoff using hierarchical and trellis methods with topographic information. Water Resour Manag 27(8):2947–2963

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. Tata McGraw-Hill Education, New York

    Google Scholar 

  • Dalrymple T (1960) Flood-frequency analyses, manual of hydrology: Part 3. USGPO

  • Das S, Cunnane C (2010) Examination of homogeneity of selected Irish pooling groups. Hydrol Earth Syst Sci Discuss 7(4):5099–5130

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Ernst MD (2004) Permutation methods: a basis for exact inference. Stat Sci 19(4):676–685

    Article  Google Scholar 

  • Fill HD, Stedinger JR (1995) Homogeneity tests based upon Gumbel distribution and a critical appraisal of Dalrymple’s test. J Hydrol 166(1–2):81–105

    Article  Google Scholar 

  • Fisher RA (1935) The design of experiments. Edinburgh: Macmillan

  • Fowler H, Kilsby C (2003) A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int J Climatol 23(11):1313–1334

    Article  Google Scholar 

  • Ghoudi K, Khoudraji A, Rivest ELP (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26(1):187–197

    Article  Google Scholar 

  • Good PI (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer, Berlin

    Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Haddad K, Rahman A (2012) Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework—quantile regression vs. parameter regression technique. J Hydrol 430–431:142–161

    Article  Google Scholar 

  • Hall P, Wilson SR (1991) Two guidelines for bootstrap hypothesis testing. Biometrics 47(2):757–762

    Article  Google Scholar 

  • Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 27(5):803–813

    Article  Google Scholar 

  • Hosking JR (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B (Methodol) 52(1):105–124

    Google Scholar 

  • Hosking J, Wallis J (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lekina A, Chebana F, Ouarda TBMJ (2013) Weighted estimate of extreme quantile: an application to the estimation of high flood return periods. Stoch Env Res Risk Assess 28(2):147–165

    Article  Google Scholar 

  • Lettenmaier DP, Wallis JR, Wood EF (1987) Effect of regional heterogeneity on flood frequency estimation. Water Resour Res 23(2):313–323

    Article  Google Scholar 

  • Lim D-U, Suh K-D, Mori N (2013) Regional projection of future extreme wave heights around Korean Peninsula. Ocean Sci J 48(4):439–453

    Article  Google Scholar 

  • Lin G-F, Chen L-H (2006) Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J Hydrol 324(1–4):1–9

    Article  Google Scholar 

  • Lo AY (1988) A Bayesian bootstrap for a finite population. Ann Stat 16(4):1684–1695

    Article  Google Scholar 

  • Lu L-H, Stedinger JR (1992) Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test. J Hydrol 138(1–2):223–245

    Article  Google Scholar 

  • Neyman J, Pearson E (1933) On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc 231:289–337

    Article  Google Scholar 

  • Ngongondo CS, Xu C-Y, Tallaksen LM, Alemaw B, Chirwa T (2011) Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches. Stoch Env Res Risk Assess 25(7):939–955

    Article  Google Scholar 

  • Norbiato D, Borga M, Sangati M, Zanon F (2007) Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J Hydrol 345(3):149–166

    Article  Google Scholar 

  • Núñez JH, Verbist K, Wallis JR, Schaefer MG, Morales L, Cornelis WM (2011) Regional frequency analysis for mapping drought events in north-central Chile. J Hydrol 405(3–4):352–366

    Article  Google Scholar 

  • Ouali D, Chebana F, Ouarda TBMJ (2015) Non-linear canonical correlation analysis in regional frequency analysis. Stoch Environ Res Risk Assess 30(2):1–14

    Google Scholar 

  • Pitman EJG (1937) Significance tests which may be applied to samples from any populations. Suppl J R Stat Soc 4(1):119–130

    Article  Google Scholar 

  • Ribatet M, Sauquet E, Grésillon J-M, Ouarda TBMJ (2006) A regional Bayesian POT model for flood frequency analysis. Stoch Env Res Risk Assess 21(4):327–339

    Article  Google Scholar 

  • Rubin DB (1981) The bayesian bootstrap. Ann Stat 9(1):130–134

    Article  Google Scholar 

  • Santhosh D, Srinivas VV (2013) Bivariate frequency analysis of floods using a diffusion based kernel density estimator. Water Resour Res 49(12):8328–8343

    Article  Google Scholar 

  • Santos J, Portela M, Pulido-Calvo I (2011) Regional frequency analysis of droughts in Portugal. Water Resour Manag 25(14):3537–3558

    Article  Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–darling tests. J Am Stat Assoc 82(399):918–924

    Google Scholar 

  • Seidou O, Ouarda TBMJ, Barbet M, Bruneau P, Bobée B (2006) A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour Res 42(11):W11408

    Google Scholar 

  • Serfling R, Xiao P (2007) A contribution to multivariate L-moments: L-comment matrices. J Multivar Anal 98(9):1765–1781

    Article  Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed extreme hydrological events. Stoch Env Res Risk Assess 17(1–2):42–57

    Article  Google Scholar 

  • Viglione A, Laio F, Claps P (2007) A comparison of homogeneity tests for regional frequency analysis. Water Resour Res 43(3):W03428

    Article  Google Scholar 

  • Vittal H, Singh J, Kumar P, Karmakar S (2015) A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches. J Hydrol 525:658–675

    Article  Google Scholar 

  • Volpi E, Fiori A (2012) Design event selection in bivariate hydrological frequency analysis. Hydrol Sci J 57(8):1506–1515

    Article  Google Scholar 

  • Wazneh H, Chebana F, Ouarda TBMJ (2015) Delineation of homogeneous regions for regional frequency analysis using statistical depth function. J Hydrol 521:232–244

    Article  Google Scholar 

  • Welch WJ (1990) Construction of permutation tests. J Am Stat Assoc 85(411):693–698

    Article  Google Scholar 

  • Wiltshire SE (1986) Regional flood frequency analysis I: homogeneity statistics. Hydrol Sci J 31(3):321–333

    Article  Google Scholar 

  • Wright MJ, Houck MH, Ferreira CM (2015) Discriminatory power of heterogeneity statistics with respect to error of precipitation quantile estimation. J Hydrol Eng 20(10):04015011

    Article  Google Scholar 

  • Yue S, Ouarda TBMJ, Bobée B, Legendre P, Bruneau P (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226(1–2):88–100

    Article  Google Scholar 

  • Yue S, Ouarda TBMJ, Bobée B (2001) A review of bivariate gamma distributions for hydrological application. J Hydrol 246(1–4):1–18

    Article  Google Scholar 

  • Zaman MA, Rahman A, Haddad K (2012) Regional flood frequency analysis in arid regions: a case study for Australia. J Hydrol 475:74–83

    Article  Google Scholar 

  • Zhang L, Singh V (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

Download references

Acknowledgments

The data used were simulated using Matlab computer codes available upon request from the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Masselot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masselot, P., Chebana, F. & Ouarda, T.B. Fast and direct nonparametric procedures in the L-moment homogeneity test. Stoch Environ Res Risk Assess 31, 509–522 (2017). https://doi.org/10.1007/s00477-016-1248-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1248-0

Keywords

Navigation