Advertisement

Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators

  • Matthias De LozzoEmail author
  • Amandine Marrel
Original Paper

Abstract

In a case of radioactive release in the environment, modeling the radionuclide atmospheric dispersion is particularly useful for emergency response procedures and risk assessment. For this, the CEA has developed a numerical simulator, called Ceres-Mithra, to predict spatial maps of radionuclide concentrations at different instants. This computer code depends on many uncertain scalar and temporal parameters, describing the radionuclide, release or weather characteristics. The purpose is to detect the input parameters the uncertainties of which highly affect the predicted concentrations and to quantify their influences. To this end, we present various measures for the sensitivity analysis of a spatial model. Some of them lead to as many analyses as spatial locations (site sensitivity indices) while others consider a single one, with respect to the whole spatial domain (block sensitivity indices). For both categories, variance-based and dependence measures are considered, based on recent literature. All of these sensitivity measures are applied to the C-M computer code and compared to each other, showing the complementarity of block and site sensitivity analyses. Finally, a sensitivity analysis summarizing the input uncertainty contribution over the entirety of the spatio-temporal domain is proposed.

Keywords

Spatio-temporal models Global sensitivity analysis Sobol’ indices Dependence measures Site & block sensitivity measures Gaussian process metamodel 

References

  1. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404CrossRefGoogle Scholar
  2. Auder B, Crecy AD, Iooss B, Marquès M (2012) Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations. Reliab Eng & Syst Saf 107:122–131CrossRefGoogle Scholar
  3. Balasubramanian K, Sriperumbudur BK, Lebanon G (2013) Ultrahigh dimensional feature screening via rkhs embeddings. Proc Sixt Int Conf Artif Intell Stat 31:126–134Google Scholar
  4. Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng & Syst Saf 92(6):771–784CrossRefGoogle Scholar
  5. Campbell K, McKay MD, Williams BJ (2006) Sensitivity analysis when model outputs are functions. Reliab Eng & Syst Saf 91(10–11):1468–1472CrossRefGoogle Scholar
  6. Crestaux T, Le Maître O, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng & Syst Saf 94(7):1161–1172CrossRefGoogle Scholar
  7. Da Veiga S (2015) Global sensitivity analysis with dependence measures. J Stat Comput Simul 85(5):1283–1305CrossRefGoogle Scholar
  8. De Lozzo M, Marrel A (2016) New improvements in the use of dependence measures for sensitivity analysis and screening. J Stat Comput Simul. doi: 10.1080/00949655.2016.1149854 Google Scholar
  9. Deza MM, Deza E (2009) Encyclopedia of distances. Springer, BerlinCrossRefGoogle Scholar
  10. Doury A (1980) Pratiques françaises en matière de dispersion quantitative de la pollution atmosphérique potentielle liée aux activités nucléaires. In: Proceedings of the seminar on radioactive releases and their dispersion in the atmosphere following a hypothetical reactor accident, vol I, pp 403–448. RISØGoogle Scholar
  11. Efron B, Stein C (1981) The jackknife estimate of variance. Ann Stat 9(3):586–596CrossRefGoogle Scholar
  12. Fang K, Li R, Sudjianto A (2006) Design and modeling for computer experiments. In: Computer science and data analysis series. Chapman & Hall/CRC, New YorkGoogle Scholar
  13. Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer series in statistics. Springer, New YorkGoogle Scholar
  14. Fukumizu K, Gretton A, Lanckriet GR, Schölkopf B, Sriperumbudur BK (2009) Kernel choice and classifiability for rkhs embeddings of probability distributions. Adv Neural Inf Process Syst 22:1750–1758Google Scholar
  15. Gamboa F, Janon A, Klein T, Lagnoux A (2014) Sensitivity analysis for multidimensional and functional outputs. Electron J Stat 8(8):575–603CrossRefGoogle Scholar
  16. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, New YorkCrossRefGoogle Scholar
  17. Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with hilbert-schmidt norms. In: Proceedings algorithmic learning theory, Springer-Verlag, New York, pp. 63–77Google Scholar
  18. Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plan Inference 26(2):131–148CrossRefGoogle Scholar
  19. Lamboni M, Monod H, Makowski D (2011) Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf 96(4):450–459CrossRefGoogle Scholar
  20. Lopez-Paz D, Hennig P, Schölkopf B (2013) The randomized dependence coefficient. In: Burges C, Bottou L, Welling M, Ghahramani Z, Weinberger K (eds) Advances in neural information processing systems 26, pp. 1–9. Curran Associates Inc., New YorkGoogle Scholar
  21. Marrel A, Iooss B, Jullien M, Laurent B, Volkova E (2011) Global sensitivity analysis for models with spatially dependent outputs. Environmetrics 22:383–397CrossRefGoogle Scholar
  22. Marrel A, Iooss B, Laurent B, Roustant O (2009) Calculations of sobol indices for the gaussian process metamodel. Reliab Eng Syst Saf 94(3):742–751CrossRefGoogle Scholar
  23. Marrel A, Marie N, De Lozzo M (2015) Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment. Reliab Eng Syst Saf 138:232–241CrossRefGoogle Scholar
  24. Marrel A, Perot N, Mottet C (2015) Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stoch Environ Res Risk Assess 29(3):959–974CrossRefGoogle Scholar
  25. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245Google Scholar
  26. Monfort M, Patryl LPA (2010) Presentation of the ceres platform used to evaluate the consequences of the emissions of radionuclides in the environment. HARMO pp. 1–4Google Scholar
  27. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174CrossRefGoogle Scholar
  28. Pujol G, Iooss B, with contributions from Paul Lemaitre AJ, Gilquin L, Gratiet LL, Touati T, Ramos B, Fruth J, Veiga SD (2014) sensitivity: sensitivity analysis. URL http://CRAN.R-project.org/package=sensitivity. R package version 1.10.1
  29. Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning (adaptive computation and machine learning). The MIT Press, CambridgeGoogle Scholar
  30. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stat Sci 4:409–435CrossRefGoogle Scholar
  31. Saint-Geours N (2012) Sensitivity analysis of spatial models: application to cost-benefit analysis of flood risk management plans. Ph.D. thesis, Université Montpellier II—Sciences et Techniques du LanguedocGoogle Scholar
  32. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270CrossRefGoogle Scholar
  33. Sobol I (1993) Sensitivity estimates for nonlinear mathematical models. MMCE 1:407–414Google Scholar
  34. Sobol I, Gresham A (1995) On an alternative global sensitivity estimators. In: Proceedings of SAMO 1995, Belgirate, pp. 40–42Google Scholar
  35. Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Stat 35(6):2769–2794CrossRefGoogle Scholar
  36. Volkova E, Iooss B, Van Dorpe F (2008) Global sensitivity analysis for a numerical model of radionuclide migration from the rrc kurchatov institute radwaste disposal site. Stoch Environ Res Risk Assess 22(1):17–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CEA, DEN, DERSaint Paul Lez DuranceFrance

Personalised recommendations