Skip to main content

Advertisement

Log in

Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Space–time variability of precipitation plays a key role as driver of many environmental processes. The objective of this study is to evaluate a spatiotemporal (STG) Neyman–Scott Rectangular Pulses (NSRP) generator over orographically complex terrain for statistical downscaling of climate models. Data from 145 rain gauges over a 5760-km2 area of Cyprus for 1980–2010 were used for this study. The STG was evaluated for its capacity to reproduce basic rainfall statistical properties, spatial intermittency, and extremes. The results were compared with a multi-single site NRSP generator (MSG). The STG performed well in terms of average annual rainfall (+1.5 % in comparison with the 1980–2010 observations), but does not capture spatial intermittency over the study area and extremes well. Daily events above 50 mm were underestimated by 61 %. The MSG produced a similar error (+1.1 %) in terms of average annual rainfall, while the daily extremes (>50-mm) were underestimated by 11 %. A gridding scheme based on scaling coefficients was used to interpolate the MSG data. Projections of three Regional Climate Models, downscaled by MSG, indicate a 1.5–12 % decrease in the mean annual rainfall over Cyprus for 2020–2050. Furthermore, the number of extremes (>50-mm) for the 145 stations is projected to change between −24 and +2 % for the three models. The MSG modelling approach maintained the daily rainfall statistics at all grid cells, but cannot create spatially consistent daily precipitation maps, limiting its application to spatially disconnected applications. Further research is needed for the development of spatial non-stationary NRSP models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ailliot P, Thomson C, Thomson P (2009) Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions. J R Stat Soc Appl Stat 58:405–426. doi:10.1111/j.1467-9876.2008.00654.x

    Article  Google Scholar 

  • Apipattanavis S, Podesta G, Rajagopalan B, Katz RW (2007) A semi parametric multivariate and multisite weather generator. Water Resour Res 43:W11401. doi:10.1029/2006WR005714

    Article  Google Scholar 

  • Avellan T, Zabel F, Mauser W (2012) The influence of input data quality in determining areas suitable for crop growth at the global scale—a comparative analysis of two soil and climate datasets. Soil Use Manag 28:249–265. doi:10.1111/j.1475-2743.2012.00400.x

    Article  Google Scholar 

  • Badas MG, Deidda R, Piga E (2006) Modulation of homogeneous space-time rainfall cascades to account for orographic influences. Nat Hazards Earth Syst Sci 6:427–437. doi:10.5194/nhess-6-427-2006

    Article  Google Scholar 

  • Baigorria GA, Jones JW (2010) GiST: a stochastic model for generating spatially and temporally correlated daily rainfall data. J Clim 23(22):5990–6008. doi:10.1175/2010JCLI3537.1

    Article  Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. doi:10.1002/joc.1602

    Article  Google Scholar 

  • Bordoy R, Burlando P (2014) Stochastic downscaling of precipitation to high-resolution scenarios in orographically complex regions: 1. Model evaluation. Water Resour Res 50:540–561. doi:10.1002/2012WR013289

    Article  Google Scholar 

  • Borgomeo E, Hall JW, Fung F, Watts G, Colquhoun K, Lambert C (2014) Risk-based water resources planning: incorporating probabilistic nonstationary climate uncertainties. Water Resour Res 50:6850–6873. doi:10.1002/2014WR015558

    Article  Google Scholar 

  • Brissette F, Khalili M, Leconte R (2007) Efficient stochastic generation of multisite synthetic precipitation data. J Hydrol 345:121–133. doi:10.1016/j.jhydrol.2007.06.035

    Article  Google Scholar 

  • Burton A, Kilsby CG, Fowler HJ, Cowpertwait PSP, O’Connell PE (2008) RainSim: a spatial-temporal stochastic rainfall modelling system. Environ Model Softw 23:1356–1369. doi:10.1016/j.envsoft.2008.04.003

    Article  Google Scholar 

  • Burton A, Fowler HJ, Blenkinsop S, Kilsby CG (2010a) Downscaling transient climate change using a Neyman-Scott Rectangular Pulses stochastic rainfall model. J Hydrol 381:18–32. doi:10.1016/j.jhydrol.2009.10.031

    Article  Google Scholar 

  • Burton A, Fowler HJ, Kilsby CG, O’Connell PE (2010b) A stochastic model for the spatial-temporal simulation of non-homogeneous rainfall occurrence and amounts. Water Resour Res 46:W11501. doi:10.1029/2009WR008884

    Article  Google Scholar 

  • Camera C, Bruggeman A, Hadjinicolaou P, Pashiardis S, Lange MA (2014) Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010. J Geophys Res Atmos 119:693–712. doi:10.1002/2013JD020611

    Article  Google Scholar 

  • Caraway NM, McCreight JL, Rajagopalan B (2014) Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling. J Hydrol 508:197–213. doi:10.1016/j.jhydrol.2013.10.054

    Article  Google Scholar 

  • Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38:1192. doi:10.1029/2001WR000906

    Article  Google Scholar 

  • Costa V, Fernandes W, Naghettini M (2015) A Bayesian model for stochastic generation of daily precipitation using an upper-bounded distribution function. Stoch Environ Res Risk Assess 29:563–576. doi:10.1007/s00477-014-0880-9

    Article  Google Scholar 

  • Cowpertwait PSP (1995) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc London Ser A 450:163–175. doi:10.1098/rspa.1995.0077

    Article  Google Scholar 

  • Cowpertwait PSP, Kilsby CG, O’Connell PE (2002) A space-time Neyman-Scott model of rainfall: empirical analysis of extremes. Water Resour Res 38:1131. doi:10.1029/2001WR000709

    Article  Google Scholar 

  • Cowpertwait PSP, Ocio D, Collazos G, de Cos O, Stocker C (2013) Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrol Earth Syst Sci 17:479–494. doi:10.5194/hess-17-479-2013

    Article  Google Scholar 

  • Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Water Resour Res 35:1853–1867. doi:10.1029/1999WR900036

    Article  Google Scholar 

  • Forsythe N, Fowler HJ, Blenkinsop S, Burton A, Kilsby CG, Archer DR, Harpham C, Hashmi MZ (2014) Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: the Upper Indus Basin. J Hydrol 517:1019–1034. doi:10.1016/j.jhydrol.2014.06.031

    Article  Google Scholar 

  • Fowler HJ, Kilsby CG, O’Connell PE, Burton A (2005) A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. J Hydrol 308:50–66. doi:10.1016/j.jhydrol.2004.10.021

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Gires A, Onof C, Maksimovic C, Schertzer D, Tchiguirinskaia I, Simões N (2012) Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: a case study. J Hydrol 442–443:117–128

    Article  Google Scholar 

  • Gonçalves M, Barrera-Escoda A, Guerreiro D, Baldasano JM, Cunillera J (2014) Seasonal to yearly assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Clim Chang 122:243–256. doi:10.1007/s10584-013-0994-y

    Article  Google Scholar 

  • Groppelli B, Bocchiola D, Rosso R (2011) Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: a case study in Italy. Water Resour Res 47:W03519. doi:10.1029/2010WR009437

    Article  Google Scholar 

  • Hadjinicolaou P, Giannakopoulos C, Zerefos C, Lange MA, Pashiardis S, Lelieveld J (2011) Mid-21st century climate and weather extremes in Cyprus as projected by six regional climate models. Reg Environ Chang 11:441–457. doi:10.1007/s10113-010-0153-1

    Article  Google Scholar 

  • Harrold TI, Sharma A, Sheather SJ (2003) A nonparametric model for stochastic generation of daily rainfall amounts. Water Resour Res 39:1–12. doi:10.1029/2003WR002570

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess 25:475–484. doi:10.1007/s00477-010-0416-x

    Article  Google Scholar 

  • Khalili M, Brisette F, Leconte R (2009) Stochastic multi-site generation of daily weather data. Stoch Environ Res Risk Assess 23:837–849. doi:10.1007/s00477-008-0275-x

    Article  Google Scholar 

  • Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Model Softw 22:1705–1719. doi:10.1016/j.envsoft.2007.02.005

    Article  Google Scholar 

  • Kim T, Ahn H, Chung G, Yoo C (2008) Stochastic multi-site generation of daily rainfall occurrence in south Florida. Stoch Environ Res Risk Assess 22:705–717. doi:10.1007/s00477-007-0180-8

    Article  Google Scholar 

  • Kizza M, Westerberger I, Rodhe A, Ntale HK (2012) Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J Hydro 464–465:401–411. doi:10.1016/j.jhydrol.2012.07.024

    Article  Google Scholar 

  • Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48:1–17. doi:10.1029/2011WR011105

    Article  Google Scholar 

  • Langousis A, Carsteanu AA, Deidda R (2013) A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stoch Environ Res Risk Assess 27:1525–1531. doi:10.1007/s00477-013-0687-0

    Article  Google Scholar 

  • Law AM, Kelton WD (1991) Simulation modelling and analysis. McGraw-Hill, New York

    Google Scholar 

  • Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Chang 114:667–687. doi:10.1007/s10584-012-0418-4

    Article  CAS  Google Scholar 

  • Marani M (2003) On the correlation structure of continuous and discrete point rainfall. Water Resour Res 39:1128. doi:10.1029/2002WR001456

    Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • Mascaro G, Piras M, Deidda R, Vivoni ER (2013) Distributed hydrologic modeling of a sparsely monitored basin in Sardinia, Italy, through hydrometeorological downscaling. Hydrol Earth Syst Sci 17:4143–4158. doi:10.5194/hess-17-4143-2013

    Article  Google Scholar 

  • Matlas NC (1967) Mathematical assessment of synthetic hydrology. Water Resour Res 3:937–945. doi:10.1029/WR003i004p00937

    Article  Google Scholar 

  • McRobie FH, Wang L-P, Onof C, Kenney S (2013) A spatial-temporal rainfall generator for urban drainage design. Water Sci Technol 68:240–249. doi:10.2166/wst.2013.241

    Article  Google Scholar 

  • Mehrotra R, Sharma A, Cordery I (2004) Comparison of two approaches for downscaling synoptic atmospheric patterns to multi-site precipitation occurrence. J Geophys Res Atmos 109:D14107. doi:10.1029/2004JD004823

    Article  Google Scholar 

  • Mehrotra R, Srikanthan R, Sharma A (2006) A comparison of three stochastic multi-site precipitation occurrence generators. J Hydrol 331:280–292. doi:10.1016/j.jhydrol.2006.05.016

    Article  Google Scholar 

  • Mehrotra R, Li J, Westra S, Sharma A (2015) A programming tool to generate multi-site daily rainfall using a two-stage semi parametric model. Environ Model Softw 63:230–239. doi:10.1016/j.envsoft.2014.10.016

    Article  Google Scholar 

  • Michaelides SC, Tymvios FS, Michaelidou T (2009) Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus. Atmos Res 94:606–615. doi:10.1016/j.atmosres.2009.04.008

    Article  Google Scholar 

  • Molnar P, Burlando P (2008) Variability in the scale properties of high-resolution precipitation data in the Alpine climate of Switzerland. Water Resour Res 44:W10404. doi:10.1029/2007WR006142

    Article  Google Scholar 

  • Moron V, Robertson AW, Ward MN, Ndiaye O (2008) Weather types and rainfall over Senegal. Part II: downscaling GCM simulations. J Clim 21:288–307. doi:10.1175/2007JCLI1624.1

    Article  Google Scholar 

  • Olsson J, Burlando P (2002) Reproduction of temporal scaling by a rectangular pulses rainfall model. Hydrol Process 16:611–630. doi:10.1002/hyp.307

    Article  Google Scholar 

  • Parkes BL, Wetterhall F, Pappenberger F, He Y, Malamud BD, Cloke HL (2013) Assessment of a 1-hour gridded precipitation dataset to drive a hydrological model: a case study of the summer 2007 floods in the Upper Severn, UK. Hydrol Res 44:89–105. doi:10.2166/nh.2011.025

    Article  Google Scholar 

  • Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J Geophys Res Atmos 101:26347–26361. doi:10.1029/96JD01870

    Article  Google Scholar 

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16:1137–1150. doi:10.1002/hyp.1054

    Article  Google Scholar 

  • Rodrigues-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc R Soc Lond Ser A 410:269–288. doi:10.1098/rspa.1987.0039

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Chang 1:82–96. doi:10.1002/wcc.8

    Article  Google Scholar 

  • Simões N, Ochoa-Rodríguez S, Wang LP, Pina R, Sa Marques A, Onof C, Leitão J (2015) Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator. Water 7:3396–3406. doi:10.3390/w7073396

    Article  Google Scholar 

  • Supit I, van Diepen CA, de Wit AJW, Wolf J, Kabat P, Baruth B, Ludwig F (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agric For Meteorol 164:96–111. doi:10.1016/j.agrformet.2012.05.005

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts. Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter. http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf. Accessed 22 Sept 2014

  • Van Vilet MTH, Blenkinsop S, Burton A, Harpham C, Broers HP, Fowler HJ (2012) A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe. Clim Chang 111:249–277. doi:10.1007/s10584-011-0131-8

    Article  Google Scholar 

  • Veneziano D, Furcolo P, Iacobellis V (2006) Imperfect scaling of time and space-time rainfall. J Hydrol 322:105–119. doi:10.1016/j.jhydrol.2005.02.044

    Article  Google Scholar 

  • Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res 42:W06D14. doi:10.1029/2005WR004489

    Article  Google Scholar 

  • Verdin A, Rajagopalan B, Kleiber W, Katz RW (2015) Coupled stochastic weather generation using spatial and generalized linear models. Stoch Environ Res Risk Assess 29:347–356. doi:10.1007/s00477-014-0911-6

    Article  Google Scholar 

  • Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210:178–191. doi:10.1016/S0022-1694(98)00186-3

    Article  Google Scholar 

  • Wilks DS (2009) A gridded multisite weather generator and synchronization to observed weather data. Water Resour Res 45:W10419. doi:10.1029/2009WR007902

    Article  Google Scholar 

  • Willems P (2001) A spatial rainfall generator for small spatial scales. J Hydrol 252:126–144. doi:10.1016/S0022-1694(01)00446-2

    Article  Google Scholar 

  • Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41:W11415. doi:10.1029/2004WR003739

    Google Scholar 

  • Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K (2003) A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resour Res 39:1199. doi:10.1029/2002WR001769

    Article  Google Scholar 

  • Zhang X, Aguilar E, Sensoy S et al (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res Atmos 110:D22104. doi:10.1029/2005JD006181

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the AGWATER project (ΑΕΙΦΟΡΙΑ/ΓΕΩΡΓΟ/0311(ΒΙΕ)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Camera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camera, C., Bruggeman, A., Hadjinicolaou, P. et al. Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. Stoch Environ Res Risk Assess 31, 757–773 (2017). https://doi.org/10.1007/s00477-016-1239-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1239-1

Keywords

Navigation