Advertisement

A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province

  • Mara S. Bernardi
  • Laura M. SangalliEmail author
  • Gabriele Mazza
  • James O. Ramsay
Original Paper

Abstract

We propose a method for the analysis of functional data with complex dependencies, such as spatially dependent curves or time dependent surfaces, over highly textured domains. The models are based on the idea of regression with partial differential regularizations. In particular, we consider here two roughness penalties that account separately for the regularity of the field in space and in time. Among the various modelling features, the proposed method is able to deal with spatial domains featuring peninsulas, islands and other complex geometries. Space-time varying covariate information is included in the model via a semi-parametric framework. The proposed method is compared via simulation studies to other spatio-temporal techniques and it is applied to the analysis of the annual production of waste in the towns of Venice province.

Keywords

Space-time model Differential regularization Finite elements 

Notes

Acknowledgments

We thank Alessandra Menafoglio for comments on this work. We are also grateful to the Associate Editor and three anonymous referees, whose suggestions greatly improved the presentation of this work. L.M. Sangalli acknowledges funding by MIUR Ministero dell’Istruzione dell’Università e della Ricerca, FIRB Futuro in Ricerca Starting Grant project “Advanced statistical and numerical methods for the analysis of high dimensional functional data in life sciences and engineering” http://mox.polimi.it/users/sangalli/firbSNAPLE.html.

References

  1. Augustin NH, Trenkel VM, Wood SN, Lorance P (2013) Space-time modelling of blue ling for fisheries stock management. Environmetrics 24(2):109–119CrossRefGoogle Scholar
  2. Azzimonti L, Sangalli LM, Secchi P, Domanin M, Nobile F (2015) Blood flow velocity field estimation via spatial regression with PDE penalization. J Am Stat Assoc 110(511):1057–1071CrossRefGoogle Scholar
  3. Caballero W, Giraldo R, Mateu J (2013) A universal kriging approach for spatial functional data. Stochastic Environ Res Risk Assess 27(7):1553–1563CrossRefGoogle Scholar
  4. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New YorkGoogle Scholar
  5. Dassi F, Ettinger B, Perotto S, Sangalli LM (2015) A mesh simplification strategy for a spatial regression analysis over the cortical surface of the brain. Appl Num Math 90:111–131CrossRefGoogle Scholar
  6. Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21(3–4):224–239Google Scholar
  7. Ettinger B, Perotto S, Sangalli LM (2016) Spatial regression models over two-dimensional manifolds. Biometrika 103(1):71–88Google Scholar
  8. Giraldo R, Delicado P, Mateu J (2011) Ordinary kriging for function-valued spatial data. Environ Ecol Stat 18(3):411–426CrossRefGoogle Scholar
  9. Goulard M, Voltz M (1993) Geostatistical interpolation of curves: a case study in soil science. In: Geostatistics Tróia'92, Springer, pp 805–816Google Scholar
  10. Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stochastic Environ Res Risk Assess 28(5):1171–1186CrossRefGoogle Scholar
  11. Lila E, Sangalli LM, Ramsay J, Formaggia L (2016) fdaPDE: regression with partial differential regularizations, using the finite element method. URL: https://CRAN.R-project.org/package=fdaPDE, R package version 0.1-1
  12. Marra G, Miller DL, Zanin L (2012) Modelling the spatiotemporal distribution of the incidence of resident foreign population. Stat Neerland 66(2):133–160CrossRefGoogle Scholar
  13. Menafoglio A, Secchi P, Dalla Rosa M (2013) A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space. ElectronJ Stat 7:2209–2240Google Scholar
  14. Menafoglio A, Guadagnini A, Secchi P (2014) A kriging approach based on Aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers. Stochastic Environ Res Risk Assess 28(7):1835–1851CrossRefGoogle Scholar
  15. Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101(2):409–418CrossRefGoogle Scholar
  16. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691CrossRefGoogle Scholar
  17. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL: http://www.R-project.org/
  18. Ramsay T (2002) Spline smoothing over difficult regions. J R Stat Soc 64(2):307–319CrossRefGoogle Scholar
  19. Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New YorkCrossRefGoogle Scholar
  20. Sangalli LM, Ramsay JO, Ramsay TO (2013) Spatial spline regression models. J R Stat Soc 75(4):681–703CrossRefGoogle Scholar
  21. Schlather M, Malinowski A, Menck PJ, Oesting M, Strokorb K (2015) Analysis, simulation and prediction of multivariate random fields with package RandomFields. J Stat Softw 63(8):1–25CrossRefGoogle Scholar
  22. Wilhelm M, Dedè L, Sangalli LM, Wilhelm P (2016) IGS: an IsoGeometric approach for Smoothing on surfaces. Comput Methods Appl Mechan Eng DOI 10.1016/j.cma.2015.12.028Google Scholar
  23. Wood S (2006) Generalized additive models: an introduction with R. CRC Press, Boca RatonGoogle Scholar
  24. Wood SN, Bravington MV, Hedley SL (2008) Soap film smoothing. J R Stat Soc 70(5):931–955CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mara S. Bernardi
    • 1
  • Laura M. Sangalli
    • 1
    Email author
  • Gabriele Mazza
    • 1
  • James O. Ramsay
    • 2
  1. 1.MOX - Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.McGill UniversityMontrealCanada

Personalised recommendations