Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling

Abstract

We present a web application named Let-It-Rain that is able to generate a 1-h temporal resolution synthetic rainfall time series using the modified Bartlett–Lewis rectangular pulse (MBLRP) model, a type of Poisson stochastic rainfall generator. Let-It-Rain, which can be accessed through the web address http://www.LetItRain.info, adopts a web-based framework combining ArcGIS Server from server side for parameter value dissemination and JavaScript from client side to implement the MBLRP model. This enables any desktop and mobile end users with internet access and web browser to obtain the synthetic rainfall time series at any given location at which the parameter regionalization work has been completed (currently the contiguous United States and Republic of Korea) with only a few mouse clicks. Let-It-Rain shows satisfactory performance in its ability to reproduce observed rainfall mean, variance, auto-correlation, and probability of zero rainfall at hourly through daily accumulation levels. It also shows a reasonably good performance in reproducing watershed runoff depth and peak flow. We expect that Let-It-Rain can stimulate the uncertainty analysis of hydrologic variables across the world.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Bathurst JC, Moretti G, El-Hames A, Moaven-Hashemi A, Burton A (2005) Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps. Nat Hazards Earth Syst Sci 5(2):189–202

    Article  Google Scholar 

  2. Birkinshaw SJ, Bathurst JC, Iroumé A, Palacios H (2011) The effect of forest cover on peak flow and sediment discharge—an integrated field and modelling study in central–southern Chile. Hydrol Process 25(8):1284–1297

    Article  Google Scholar 

  3. Blazkov S, Beven K (1997) Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J Hydrol 195(1):256–278

    Article  Google Scholar 

  4. Burton A et al (2008) RainSim: a spatial–temporal stochastic rainfall modelling system. Environ Model Softw 23(12):1356–1369

    Article  Google Scholar 

  5. Burton A, Fowler HJ, Blenkinsop S, Kilsby CG (2010) Downscaling transient climate change using a Neyman–Scott Rectangular Pulses stochastic rainfall model. J Hydrol 381(1):18–32

    Article  Google Scholar 

  6. Calver A, Stewart E, Goodsell G (2009) Comparative analysis of statistical and catchment modelling approaches to river flood frequency estimation. J Flood Risk Manag 2(1):24–31

    Article  Google Scholar 

  7. Camici S, Tarpanelli A, Brocca L, Melone F, Moramarco T (2011) Design soil moisture estimation by comparing continuous and storm-based rainfall-runoff modeling. Water Resour Res 47(5):W05527

    Article  Google Scholar 

  8. Chen X, Ye X, Carroll M, Li Y (2014) Online Flood Information System: REST-based Web Service. Int J Appl Geosp Res 5(2):1–10

    Article  Google Scholar 

  9. Cho H, Kim D, Olivera F, Guikema SD (2011) Enhanced speciation in particle swarm optimization for multi-modal problems. Eur J Oper Res 213(1):15–23

    Article  Google Scholar 

  10. Chun KP, Wheater HS, Onof C (2013) Comparison of drought projections using two UK weather generators. Hydrol Sci J 58(2):295–309

    Article  Google Scholar 

  11. Cowden JR, Watkins DW Jr, Mihelcic JR (2008) Stochastic rainfall modeling in West Africa: parsimonious approaches for domestic rainwater harvesting assessment. J Hydrol 361(1):64–77

    Article  Google Scholar 

  12. Cowpertwait PS (1994) A generalized point process model for rainfall. Proc R Soc Lond A 447(1929):23–37

    Article  Google Scholar 

  13. Cowpertwait PS (1995) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc Lond A 450(1938):163–175

    Article  Google Scholar 

  14. Cowpertwait PS (1998) A Poisson-cluster model of rainfall: some high-order moments and extreme values. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 454, no. 1971. The Royal Society, pp 885–898

  15. Cowpertwait PSP, O’Connell PE, Metcalfe AV, Mawdsley JA (1996a) Stochastic point process modelling of rainfall. I. Single-site fitting and validation. J Hydrol 175(1):17–46

    Article  Google Scholar 

  16. Cowpertwait PSP, O’Connell PE, Metcalfe AV, Mawdsley JA (1996b) Stochastic point process modelling of rainfall. II. Regionalisation and disaggregation. J Hydrol 175(1):47–65

    Article  Google Scholar 

  17. Fatichi S, Ivanov VY, Caporali E (2011) Simulation of future climate scenarios with a weather generator. Adv Water Resour 34(4):448–467

    Article  Google Scholar 

  18. Fatichi S, Rimkus S, Burlando P, Bordoy R, Molnar P (2013) Elevational dependence of climate change impacts on water resources in an Alpine catchment. Hydrol Earth Syst Sci Dis 10(3):3743–3794

    Article  Google Scholar 

  19. Glasbey CA, Cooper G, McGechan MB (1995) Disaggregation of daily rainfall by conditional simulation from a point-process model. J Hydrol 165(1):1–9

    Article  Google Scholar 

  20. Green H, Ampt GA (1912) Studies on soil physics: part II—the permeability of an ideal soil to air and water. J Agric Sci 5(01):1–26

    Article  Google Scholar 

  21. Hanaish IS, Ibrahim K, Jemain AA (2013) On the applicability of Bartlett Lewis Model: with reference to missing data. MATEMATIKA 29:53–65

    Google Scholar 

  22. Islam S, Entekhabi D, Bras RL, Rodriguez‐Iturbe I (1990) Parameter estimation and sensitivity analysis for the modified Bartlett‐Lewis rectangular pulses model of rainfall. J Geophys Res 95(D3):2093–2100

    Article  Google Scholar 

  23. Kay AL, Jones RG (2012) Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency. Clim Change 114(2):211–230

    Article  Google Scholar 

  24. Khaliq M, Cunnane C (1996) Modelling point rainfall occrrences with the modified Bartlett-Lewis rectangular pulses model. J Hydrol 180:109–138

    Article  Google Scholar 

  25. Kigobe M, McIntyre N, Wheater H, Chandler R (2011) Multi-site stochastic modelling of daily rainfall in Uganda. Hydrol Sci J 56(1):17–33

    Article  Google Scholar 

  26. Kim D, Olivera F (2012) Relative importance of the different rainfall statistics in the calibration of stochastic rainfall generation models. J Hydrol Eng 17(3):368–376

    Article  Google Scholar 

  27. Kim D, Olivera F, Cho H, Socolofsky SA (2013a) Regionalization of the modified Bartlett-Lewis Rectangular Pulse stochastic rainfall model. Terr Atmos Ocean Sci 24(3):421–435

    Article  Google Scholar 

  28. Kim D, Olivera F, Cho H (2013b) Effect of the inter-annual variability of rainfall statistics on stochastically generated rainfall time series: part 1. Impact on peak and extreme rainfall values. Stoch Env Res Risk Assess 27(7):1601–1610

    Article  Google Scholar 

  29. Kim D, Olivera F, Cho H, Lee SO (2013c) Effect of the inter-annual variability of rainfall statistics on stochastically generated rainfall time series: part 2. Impact on watershed response variables. Stoch Env Res Risk Assess 27(7):1611–1619

    Article  Google Scholar 

  30. Kim, D., Kwon, H. H., Lee, S. O., & Kim, S. (2014). Regionalization of the Modified Bartlett–Lewis rectangular pulse stochastic rainfall model across the Korean Peninsula. J Hydro-environ Res. Available online 8 December 2014, ISSN 1570-6443. 10.1016/j.jher.2014.10.004. http://www.sciencedirect.com/science/article/pii/S1570644314000823

  31. NRCS (1985) National engineering handbook, section 4: hydrology, natural resources conservation service, U.S. Department of Agriculture, Washington, DC

  32. Olsson J, Burlando P (2002) Reproduction of temporal scaling by a rectangular pulses rainfall model. Hydrol Process 16(3):611–630

    Article  Google Scholar 

  33. Onof C, Arnbjerg-Nielsen K (2009) Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos Res 92(3):350–363

    Article  Google Scholar 

  34. Onof C, Wheater HS (1993) Modelling of British rainfall using a random parameter Bartlett–Lewis rectangular pulse model. J Hydrol 149(1):67–95

    Article  Google Scholar 

  35. Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch Env Res Risk Assess 14(6):384–411

    Article  Google Scholar 

  36. Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333

    Google Scholar 

  37. Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc R Soc Lond Ser A 410(1839):269–288

    Article  Google Scholar 

  38. Rodriguez-Iturbe I, Cox DR, Isham V (1988) A point process model for rainfall: further developments. Proc R Soc Lond A 417(1853):283–298

    Article  Google Scholar 

  39. Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25(2):165–172

    Article  Google Scholar 

  40. Tan X, Di L, Deng M, Chen A, Sun Z, Huang C, Shao Y, Ye X (2015) Agent-and cloud-supported geospatial service aggregation for flood response. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2(4):13

    Article  Google Scholar 

  41. Tucker GE, Bras RL (2000) A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resour Res 36(7):1953–1964

    Article  Google Scholar 

  42. Visser A, Kroes J, van Vliet MTH, Blenkinsop S, Fowler HJ, Broers HP (2012) Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. J Contam Hydrol 127(1):47–64

    CAS  Article  Google Scholar 

  43. Wang Y, Wang T, Ye X, Zhu J, Lee J (2015) Using social media for emergency response and urban sustainability: a case study of the 2012 Beijing rainstorm. Sustainability 8(1):25

    Article  Google Scholar 

  44. Wheater HS, Chandler RE, Onof CJ, Isham VS, Bellone E, Yang C, Lekkas D, Lourmas G, Segond ML (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Env Res Risk Assess 19(6):403–416

    Article  Google Scholar 

  45. Zhou Q, Mikkelsen PS, Halsnæs K, Arnbjerg-Nielsen K (2012) Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J Hydrol 414:539–549

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Research Laboratory Program (50 %, Grant ID: NRF-2015041523) and by the Basic Science Research Program (50 %, Grant ID: NRF-2013R1A1A1011676) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongkyun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Cho, H., Onof, C. et al. Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling. Stoch Environ Res Risk Assess 31, 1023–1043 (2017). https://doi.org/10.1007/s00477-016-1234-6

Download citation

Keywords

  • Poisson cluster rainfall simulation
  • Modified Bartlett–Lewis rectangular pulse model
  • Neyman–Scott rectangular pulse model
  • Rainfall disaggregation
  • Rainfall downscaling
  • Climate change