Skip to main content
Log in

Contribution of climatic and technological factors to crop yield: empirical evidence from late paddy rice in Hunan Province, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Climatic and technological factors are two remarkable aspects that are thought to contribute to crop yield change. However, the most significant factors and their contribution rate remain debatable. Selecting Hunan Province, which is one of the largest paddy rice producing regions in China as the research area, the marginal contributions of climatic and technological factors to late paddy yield change are estimated using a county-level panel data regression model with explicit consideration of technological variables during 2000–2011. The results indicate that the mean daily temperature and adoption rate of hybrid rice have significant positive impacts on late paddy rice yield. During the research period, 1 °C temperature increase will cause 7.220 t/km2 increase in late paddy rice yield, and 1 % increase in the adoption rate of hybrid rice will cause 0.212 t/km2 increase. Climatic factors, especially their annual variability, exhibit a stronger overall linkage to changes in late paddy rice yield in the study area compared with the technological factors. Climatic factors accounted for 67.645 and 74.585 % of the trend and variability in late paddy rice yield, respectively. The results of this study can provide valuable information for stakeholders to adjust the input on late paddy rice production and better adapt to the effect of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinbile CO, Akinlade GM, Abolude AT (2015) Trend analysis in climatic variables and impacts on rice yield in Nigeria. J Water Clim Chang 6:534–543. doi:10.2166/wcc.2015.044

    Article  Google Scholar 

  • Almaraz JJ, Mabood F, Zhou X, Gregorich EG, Smith DL (2008) Climate change, weather variability and corn yield at a higher latitude locale: Southwestern Quebec. Clim Chang 88:187–197

    Article  Google Scholar 

  • Altinsoy H, Kurt C, Kurnaz ML (2013) Analysis of the effect of climate change on the yield of crops in Turkey using a statistical approach. In: Helmis CG, Nastos PT (eds) Advances in meteorology, climatology and atmospheric physics., Springer Atmospheric SciencesSpringer, Berlin, pp 379–384. doi:10.1007/978-3-642-29172-2_53

    Chapter  Google Scholar 

  • Attavanich W, McCarl BA (2014) How is CO2 affecting yields and technological progress? A statistical analysis. Clim Chang 124:747–762

    Article  CAS  Google Scholar 

  • Baier W (1973) Crop-Weather analysis model: review and model development. J Appl Meteorol 1973(12):937–947

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (2011) Principles of geographical information Systems. Oxford University Press, Oxford

    Google Scholar 

  • Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Chang 83:381–399. doi:10.1007/s10584-007-9249-0

    Article  Google Scholar 

  • Challinor AJ, Ewert F, Arnold S, Simelton E, Fraser E (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60:2775–2789

    Article  CAS  Google Scholar 

  • Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    Article  Google Scholar 

  • Deng PY (2013) Studies on regional layout optimization of the rice in hunan province. Dissertation, Hunan Agricultural University

  • Du J, Fang J, Xu W, Shi P (2013) Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch Environ Res Risk Assess 27:377–387

    Article  Google Scholar 

  • Dyer F, ElSawah S, Croke B, Griffiths R, Harrison E, Lucena-Moya P, Jakeman A (2014) The effects of climate change on ecologically-relevant flow regime and water quality attributes. Stoch Environ Res Risk Assess 28:67–82. doi:10.1007/s00477-013-0744-8

    Article  Google Scholar 

  • Evenson RE, Gollin D (2003) Crop variety improvement and its effect on productivity: the impact of international agricultural research. Cabi. doi:10.1079/9780851995496.0000

    Google Scholar 

  • Ewert F, Rounsevell MDA, Reginster I, Metzger MJ, Leemans R (2005) Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agric Ecosyst Environ 107:101–116. doi:10.1016/j.agee.2004.12.003

    Article  Google Scholar 

  • Ewert F, van Ittersum MK, Heckelei T, Therond O, Bezlepkina I, Andersen E (2011) Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric Ecosyst Environ 142:6–17

    Article  Google Scholar 

  • Fang S (2011) Exploration of method for discrimination between trend crop yield and climatic fluctuant yield. J Nat Disasters 20:13–18

    Google Scholar 

  • Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century: methodology and results. Remaprint, Vienna

    Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B 365:2973–2989

    Article  Google Scholar 

  • Greene JS, Maxwell E (2007) Climatic impacts on winter wheat in Oklahoma and potential applications to climatic and crop yield prediction. Int J Biometeorol 52:117–126. doi:10.1007/s00484-007-0104-9

    Article  Google Scholar 

  • Guo L, Wilkes A, Yu H, Xu J (2013) Analysis of factors influencing yield variability of major crops in China Plant. Divers Resour 35:513–521

    Google Scholar 

  • Guo J, Zhao J, Wu D, Mu J, Xu Y (2014a) Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010. J Meteorol Res 28:1168–1181. doi:10.1007/s13351-014-4002-x

    Article  Google Scholar 

  • Guo Y, Li Z, Amo-Boateng M, Deng P, Huang P (2014b) Quantitative assessment of the impact of climate variability and human activities on runoff changes for the upper reaches of Weihe River. Stoch Environ Res Risk Assess 28:333–346. doi:10.1007/s00477-013-0752-8

    Article  CAS  Google Scholar 

  • Huang J, Sun S, Xue Y, Zhang J (2014) Spatial and temporal variability of precipitation indices during 1961–2010 in Hunan Province, central south China. Theor Appl Climatol 118:581–595

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva

  • Isik M, Devadoss S (2006) An analysis of the impact of climate change on crop yields and yield variability. Appl Econ 38:835–844

    Article  Google Scholar 

  • Joshi NP, Maharjan KL, Piya L (2011) Effect of climate variables on yield of major food-crops in Nepal-A time-series analysis. J Contemp India Stud 1:19–26

    Google Scholar 

  • Kabubo-Mariara J, Karanja FK (2007) The economic impact of climate change on Kenyan crop agriculture: a Ricardian approach. Global Planet Chang 57:319–330

    Article  Google Scholar 

  • Kaufmann RK, Snell SE (1997) A biophysical model of corn yield: integrating climatic and social determinants American. J Agric Econ 79:178–190

    Article  Google Scholar 

  • Kima AS, Traore S, Wang Y-M, Chung W-G (2014) Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel. Agric Water Manag 146:149–162

    Article  Google Scholar 

  • Kunimitsu Y, Iizumi T, Yokozawa M (2014) Is long-term climate change beneficial or harmful for rice total factor productivity in Japan: evidence from a panel data analysis. Paddy Water Environ 12:213–225. doi:10.1007/s10333-013-0368-0

    Article  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  Google Scholar 

  • Leipnik M, Su Y, Lane R, Ye X (2014a) Agriculture and food production in china and the U.S. In: Hartmann R, Wang JA, Ye T (eds) A comparative geography of China and the US. Springer, Dordrecht

    Google Scholar 

  • Leipnik M, Su Y, Ye X (2014b) The main agricultural regions of China and the U.S. In: Hartmann R, Wang JA, Ye T (eds) A comparative geography of China and the US. Springer, Dordrecht

    Google Scholar 

  • Liu S, Mo X, Lin Z, Xu Y, Ji J, Wen G, Richey J (2010) Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric Water Manag 97:1195–1209

    Article  Google Scholar 

  • Liu L, Yan Z, Liang T, Cao W, Wang E (2013) Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: a case study in the Taihu region. Field Crops Res 149:40–48

    Article  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in US agricultural yields. Science 299:1032

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150:1443–1452

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:1–7

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  Google Scholar 

  • McCarl BA, Villavicencio X, Wu X (2008) Climate change and future analysis: is stationarity dying? Am J Agric Econ 90:1241–1247

    Article  Google Scholar 

  • Miao R, Khanna M, Huang H (2015) Responsiveness of crop yield and acreage to prices and climate. Am J Agric Econ. doi:10.1093/ajae/aav025

    Google Scholar 

  • Offutt SE, Garcia P, Pinar M (1987) Technological advance, weather, and crop yield behavior. North Cent J Agric Econ 9:49–63. doi:10.2307/1349341

    Article  Google Scholar 

  • Ottman M et al (2001) Elevated CO2 increases sorghum biomass under drought conditions. New Phytol 150:261–273

    Article  Google Scholar 

  • Pan Z, Liao Y, Peng J (2013) The strategy for climate change adapting in Hunan Province. Hunan University Press, Changsha

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67. doi:10.1016/j.gloenvcha.2003.10.008

    Article  Google Scholar 

  • Peng S et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  CAS  Google Scholar 

  • Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12:3–8. doi:10.1626/pps.12.3

    Article  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability.Nature. Communications. doi:10.1038/ncomms6989

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein P, Chivian E (2001) Climate change and extreme weather events;implications for food production, plant diseases, and pests. Glob Chang Human Health 2:90–104. doi:10.1023/A:1015086831467

    Article  Google Scholar 

  • Rotter RP, Carter TR, Olesen JE (2011) Crop-climate models need an overhaul. Nat Clim Chang 1:175–177

    Article  Google Scholar 

  • Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on West African crop yields: what does the recent literature say? Glob Environ Chang 21:1073–1083

    Article  Google Scholar 

  • Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5:014010

    Article  Google Scholar 

  • Schlenker W, Roberts MJ (2009a) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106:15594–15598

    Article  CAS  Google Scholar 

  • Schlenker W, Roberts MJ (2009b) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Science 106:15594–15598

    Article  CAS  Google Scholar 

  • Sheehy JE, Mitchell P, Allen L, Ferrer AB (2006) Mathematical consequences of using various empirical expressions of crop yield as a function of temperature. Field crops Res 98:216–221

    Article  Google Scholar 

  • Shi W, Tao F, Zhang Z (2013) A review on statistical models for identifying climate contributions to crop yields. J Geogr Sci 23:567–576. doi:10.1007/s11442-013-1029-3

    Article  Google Scholar 

  • Sivakumar B, Christakos G (2011) Climate: patterns, changes, and impacts. Stoch Environ Res Risk Assess 25:443–444. doi:10.1007/s00477-010-0413-0

    Article  Google Scholar 

  • Slayton T (2009) Rice crisis forensics: How Asian governments carelessly set the world rice market on fire. Center for Global Development working paper 163

  • Song Y, Wang C, Ren G, Zhao Y, Linderholm HW (2014) The relative contribution of climate and cultivar renewal to shaping rice yields in China since 1981. Theor Appl Climatol 120:1–9

    Article  Google Scholar 

  • Tao F, Zhang Z (2013) Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric For Meteorol 170:146–165

    Article  Google Scholar 

  • Tao F, Yokozawa M, Liu J, Zhang Z (2008) Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim Res 38:83–94

    Article  Google Scholar 

  • Tolhurst TN, Ker AP (2014) Ontechnological change in crop yields. Am J Agric Econ 97:137–158

    Article  Google Scholar 

  • Tubiello FN et al (2007) Crop response to elevated CO2 and world food supply: a comment on “Food for Thought…” by Long et al., Science 312: 1918–1921, 2006. Eur J Agron 26:215–223

    Article  CAS  Google Scholar 

  • Verón S, de Abelleyra D, Lobell D (2015) Impacts of precipitation and temperature on crop yields in the Pampas. Clim Chang 130:235–245. doi:10.1007/s10584-015-1350-1

    Article  Google Scholar 

  • Wang JX, Huang JK, Jun Y (2014) Overview of impacts of climate change and adaptation in China’s agriculture. J Integr Agric 13:1–17

    Article  Google Scholar 

  • Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci 107:14562–14567

    Article  CAS  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  Google Scholar 

  • Wu J, Gao X (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys 56:1102–1111

    Google Scholar 

  • Yang L, Qin Z, Tu L (2015) Responses of rice yields in different rice-cropping systems to climate variables in the middle and lower reaches of the Yangtze River. China Food Secur 2015:1–13

    CAS  Google Scholar 

  • Yao Z, Yang F, Liu X, Yan M, Meng J (2011) Quantitative assessment of impacts of climate and economic-technical factors on grain yield in Jilin Province from 1980 to 2008. Chin Geogr Sci 21:543–553

    Article  Google Scholar 

  • Ye X, Dang A (2013) Spatial analysis and modeling of urban and regional development. Ann Gis 19:129

    Article  Google Scholar 

  • Ye L et al (2013) Climate change impact on China food security in 2050. Agron For Sustain Dev 33:363–374. doi:10.1007/s13593-012-0102-0

    Article  Google Scholar 

  • Ye T, Nie J, Wang J, Shi P, Wang Z (2015) Performance of detrending models of crop yield risk assessment: evaluation on real and hypothetical yield data. Stoch Environ Res Risk Assess 29:109–117. doi:10.1007/s00477-014-0871-x

    Article  Google Scholar 

  • Yu Q, Hengsdijk H, Liu JD (2001) Application of a progressive-difference method to identify climatic factors causing variation in the rice yield in the Yangtze Delta, China. Int J Biometeorol 45:53–58. doi:10.1007/s004840000084

    Article  CAS  Google Scholar 

  • Yu Y, Huang Y, Zhang W (2012) Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res 136:65–75

    Article  Google Scholar 

  • Yu Y, Zhang W, Huang Y (2014) Impact assessment of climate change, carbon dioxide fertilization and constant growing season on rice yields in China. Clim Chang 124:763–775

    Article  CAS  Google Scholar 

  • Zeng S, Xia J, Du H (2014) Separating the effects of climate change and human activities on runoff over different time scales in the Zhang River basin. Stoch Environ Res Risk Assess 28:401–413. doi:10.1007/s00477-013-0760-8

    Article  Google Scholar 

  • Zhu D, Cheng S, Zhang Y, Lin X, Chen H (2010) Analysis of status and constraints of rice production in the world. Sci Agric Sin 43:474–479

    Google Scholar 

Download references

Acknowledgments

We thanks to the comments of anonymous reviewers and the Editors. This study was financially supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant no. 41321001),  the 973 Program: “Adaptation Paradigms to Global and China’s Environmental Risks” (Grant no. 2012CB955404), and the 111 project: “Hazard and Risk Science Base at Beijing Normal University” (Grant no. B08008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ye, T., Wang, J. et al. Contribution of climatic and technological factors to crop yield: empirical evidence from late paddy rice in Hunan Province, China. Stoch Environ Res Risk Assess 30, 2019–2030 (2016). https://doi.org/10.1007/s00477-016-1215-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1215-9

Keywords

Navigation