Integrated stochastic modeling of pharmaceuticals in sewage networks

  • Sylvain Coutu
  • Timothée Pouchon
  • Pierre Queloz
  • Nathalie Vernaz
Original Paper

Abstract

Pharmaceuticals and particularly antibiotics can harm sensitive aquatic species. Their occurrence in urban wastewater systems is the consequence of five successive processes: (i) ingestion of the substance, (ii) accumulation in the urine, (iii) excretion, (iv) degradation in the sewer system and (v) transport to the wastewater treatment plant (WTP). These processes were included in an integrated model that can be used to assess the dynamics of pharmaceuticals at a WTP inlet. First, information on sales data, posology, pharmacokinetics and toilet flushing frequency were combined to create a source model of pharmaceuticals entering a sewer system. This production function was then coupled with a transport/degradation model to simulate concentrations of pharmaceuticals at a WTP inlet. In an example application, the full model was applied to simulate the concentration of the antibiotic ciprofloxacin on an hourly time scale. In this application, the model was calibrated and validated for a case study at a WTP in Lausanne, Switzerland. Validation of the integrated approach was successful despite the high variability evident in the model results. This modeling approach has potential use in pollution management and epidemiology related to wastewater.

Keywords

Pharmaceuticals Micropollutants Stochastic modeling Urban hydrology Wastewater Water quality 

References

  1. Bergan T, Thorsteinsson SB, Kolstad IM, Johnsen S (1986) Pharmacokinetics of ciprofloxacin after intravenous and increasing oral doses. Eur J Clin Microbiol 5:187–192. doi:10.1007/BF02013984 CrossRefGoogle Scholar
  2. Besse JP, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176(2):104–123CrossRefGoogle Scholar
  3. Bois FY, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278(3):256–267. doi:10.1016/j.tox.2010.06.007 CrossRefGoogle Scholar
  4. Bonvin F, Rutler R, Chèvre N, Halder J, Kohn T (2011) Spatial and temporal presence of a wastewater-derived micropollutant plume in Lake Geneva. Environ Sci Technol 45(11):4702–4709CrossRefGoogle Scholar
  5. Carballa M, Omil F, Lema JM (2008) Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in spanish sewage. Chemosphere 72(8):1118–1123CrossRefGoogle Scholar
  6. Chèvre N, Coutu S, Margot J, Wynn H, Bader HP, Scheidegger R, Rossi L (2013) Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system. Water Res 47:2995–3005. doi:10.1016/j.watres.2013.03.004 CrossRefGoogle Scholar
  7. Conley JM, Symes SJ, Schorr MS, Richards SM (2008) Spatial and temporal analysis of pharmaceutical concentrations in the upper Tennessee River basin. Chemosphere 73(8):1178–1187. doi:10.1016/S0045-6535/j.chemosphere.2008.07.062 CrossRefGoogle Scholar
  8. Coutu S, Giudice DD, Rossi L, Barry D (2012a) Parsimonious hydrological modeling of urban sewer and river catchments. J Hydrol 464465(0):477–484, doi:10.1016/j.jhydrol.2012.07.039, http://www.sciencedirect.com/science/article/pii/S0022169412006403
  9. Coutu S, Rossi L, Barry DA, Chèvre N (2012) Methodology to account for uncertainties and tradeoffs in pharmaceutical environmental hazard assessment. J Environ Manag 98(1):183–190. doi:10.1016/j.jenvman.2012.01.001 CrossRefGoogle Scholar
  10. Coutu S, Rossi L, Barry DA, Rudaz S, Vernaz N (2013a) Temporal variability of antibiotics fluxes in wastewater and contribution from hospitals. PLoS One 8(e53):592. doi:10.1371/journal.pone.0053592 Google Scholar
  11. Coutu S, Wyrsch V, Wynn H, Rossi L, Barry D (2013) Temporal dynamics of antibiotics in wastewater treatment plant influent. Sci Total Environ 460:20–26. doi:10.1016/j.scitotenv.2013.04.017 CrossRefGoogle Scholar
  12. Cunningham VL, Binks SP, Olson MJ (2009) Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharmacol 53(1):39–45. doi:10.1016/j.yrtph.2008.10.006 CrossRefGoogle Scholar
  13. Friedler E, Butler D, Brown DM (1996) Domestic WC usage patterns. Build Environ 31(4):385–392. doi:10.1016/0360-1323(96)00008-X CrossRefGoogle Scholar
  14. Garcia Hernandez J, Jordan F, Dubois J, Boillat JL (2007) Routing system II—modélisation d’écoulements dans des systèmes hydrauliques. Communication (Laboratoire de constructions hydrauliques, Ecole polytechnique fédérale de Lausanne), EPFL-LCH, LausanneGoogle Scholar
  15. Garrison L, Neumann P, Erickson P, Marshall D, Mullins C (2007) Using real-world data for coverage and payment decisions: the ISPOR real-world data task force report. Value Health 10:326–335. doi:10.1111/j.1524-4733.2007.00186.x CrossRefGoogle Scholar
  16. Gerrity D, Trenholm R, Snyder SA (2011) Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event. Water Res 45:5399–5411. doi:10.1016/j.watres.2011.07.020 CrossRefGoogle Scholar
  17. Gibaldi M, Boyes RN, Feldman S (1971) Influence of first-pass effect on availability of drugs on oral administration. J Pharm Sci 60(9):1338–1340. doi:10.1002/jps.2600600909 CrossRefGoogle Scholar
  18. Gupta K, Saul AJ (1996) Specific relationships for the first flush load in combined sewer flows. Water Res 30:1244–1252. doi:10.1016/0043-1354(95)00282-0 CrossRefGoogle Scholar
  19. Heberer T, Feldmann D (2005) Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents—modeling versus measurements. J Hazard Mater 122(3):211–218. doi:10.1016/j.jhazmat.2005.03.007 CrossRefGoogle Scholar
  20. Hulsbeek JJW, Kruit J, Roeleveld PJ, van Loosdrecht MCM (2002) A practical protocol for dynamic modelling of activated sludge systems. Water Sci Technol 45:127–136Google Scholar
  21. Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19:226–240. doi:10.1002/tox.20015 CrossRefGoogle Scholar
  22. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022CrossRefGoogle Scholar
  23. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152. doi:10.1016/j.watres.2005.05.031 CrossRefGoogle Scholar
  24. Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, Thach S, Cheung P, Whitehead B (2011) Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—occurrence and treatment efficiency. Sci Total Environ 409:1481–1488. doi:10.1016/j.scitotenv.2011.01.010 CrossRefGoogle Scholar
  25. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36(6):1202–1211CrossRefGoogle Scholar
  26. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. doi:10.1016/j.chemosphere.2008.11.086 CrossRefGoogle Scholar
  27. Langford KH, Thomas KV (2009) Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ Int 35(5):766–770. doi:10.1016/j.envint.2009.02.007 CrossRefGoogle Scholar
  28. Le Corre KS, Ort C, Kateley D, Allen B, Escher BI, Keller J (2012) Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environ Int 45(1):99–111. doi:10.1016/j.envint.2012.03.008 CrossRefGoogle Scholar
  29. Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39(14):5209–5218. doi:10.1021/es0484146 CrossRefGoogle Scholar
  30. Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42(6):620–643. http://jcp.sagepub.com/content/42/6/620.full.pdf+html
  31. Musolff A, Leschik S, Möder M, Strauch G, Reinstorf F, Schirmer M (2009) Temporal and spatial patterns of micropollutants in urban receiving waters. Environ Pollut 157(11):3069–3077. doi:10.1016/j.envpol.2009.05.037 CrossRefGoogle Scholar
  32. Nestorov IA, Aarons LJ, Arundel PA, Rowland M (1998) Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 26:21–46. doi:10.1023/A:1023272707390 CrossRefGoogle Scholar
  33. Pang KS (2003) Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the gillette review series). Drug Metabol Dispos 31(12):1507–1519. doi:10.1124/dmd.31.12.1507, http://dmd.aspetjournals.org/content/31/12/1507.full.pdf+html
  34. Perazzolo C, Morasch B, Kohn T, Magnet A, Thonney D, Chèvre N (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part I: priority list for environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 29(8):1649–1657. doi:10.1002/etc.221 Google Scholar
  35. Perrin C, Michel C, Andréassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242(3–4):275–301. doi:10.1016/S0022-1694(00)00393-0 CrossRefGoogle Scholar
  36. Phillips PJ, Chalmers AT, Gray JL, Kolpin DW, Foreman WT, Wall GR (2012) Combined sewer overflows: an environmental source of hormones and wastewater micropollutants. Environ Sci Technol 46(10):5336–5343. doi:10.1021/es3001294, http://pubs.acs.org/doi/pdf/10.1021/es3001294
  37. Plósz BG, Leknes H, Liltved H, Thomas KV (2010) Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway. Sci Total Environ 408(8):1915–1924. doi:10.1016/j.scitotenv.2010.01.042 CrossRefGoogle Scholar
  38. Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450CrossRefGoogle Scholar
  39. Rauch W, Brockmann D, Peters I, Larsen TA, Gujer W (2003) Combining urine separation with waste design: an analysis using a stochastic model for urine production. Water Res 37(3):681–689. doi:10.1016/S0043-1354(02)00364-0 CrossRefGoogle Scholar
  40. Rodriguez-Iturbe I, Rinaldo A (2001) Fractal river basins: chance and self-organization. Cambridge University Press, CambridgeGoogle Scholar
  41. Rossi L, Chèvre N, Fankhauser R, Krejci V (2009) Probabilistic environmental risk assessment of urban wet-weather discharges: an approach developed for switzerland. Urban Water J 6(5):355–367CrossRefGoogle Scholar
  42. Rowland M (1972) Influence of route of administration on drug availability. J Pharm Sci 61(1):70–74. doi:10.1002/jps.2600610111 CrossRefGoogle Scholar
  43. Santos J, Aparicio I, Callejón M, Alonso E (2009) Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J Hazard Mater 164:1509–1516. doi:10.1016/j.jhazmat.2008.09.073 CrossRefGoogle Scholar
  44. Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G, Dünnbier U (2012) Seeking a compromise between pharmaceutical pollution and phosphorus load: management strategies for lake tegel, berlin. Water Res 46:4153–4163. doi:10.1016/j.watres.2012.05.024 CrossRefGoogle Scholar
  45. Snyder FF (1938) Synthetic unit-graphs. Eos Trans Am Geophys Union 19(1):447–454CrossRefGoogle Scholar
  46. Stuer-Lauridsen F (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40(7):1509–1524. doi:10.1016/S0045-6535(99)00453-1 CrossRefGoogle Scholar
  47. Swanson BN, Boppana VK, Vlasses PH, Rotmensch HH, Ferguson RK (1983) Norfloxacin disposition after sequentially increasing oral doses. Antimicrob Agents Chemother 23(2):284–288. doi:10.1128/AAC.23.2.284, http://aac.asm.org/content/23/2/284.full.pdf+html
  48. Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering: treatment and reuse. McGraw-Hill Science, New YorkGoogle Scholar
  49. Tyler CR, Filby AL, Bickley LK, Cumming RI, Gibson R, Labadie P, Katsu Y, Liney KE, Shears JA, Silva-Castro V, Urushitani H, Lange A, Winter MJ, Lguchi T, Hill EM (2009) nvironmental health impacts of equine estrogens derived from hormone replacement therapy. Environ Sci Technol 43(10):3897–3904CrossRefGoogle Scholar
  50. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-a review. Sci Total Environ 429:123–155. doi:10.1016/j.scitotenv.2012.04.028 CrossRefGoogle Scholar
  51. Vernaz N, Sax H, Pittet D, Bonnabry P, Schrenzel J, Harbarth S (2008) Temporal effects of antibiotic use and hand rub consumption on the incidence of MRSA and Clostridium difficile. J Antimicrob Chemother 62(3):601–607. doi:10.1093/jac/dkn199, http://jac.oxfordjournals.org/content/62/3/601.full.pdf+html
  52. Webb S, Ternes T, Gibert M, Olejniczak K (2003) Indirect human exposure to pharmaceuticals via drinking water. Toxicol Lett 142(3):157–167. doi:10.1016/S0378-4274(03)00071-7 CrossRefGoogle Scholar
  53. Wei X, Kusiak A (2015) Short-term prediction of influent flow in wastewater treatment plant. Stoch Environ Res Risk Assess 29(1):241–249. doi:10.1007/s00477-014-0889-0 CrossRefGoogle Scholar
  54. Wunder D, Bosscher V, Cok R, Hozalski R (2011) Sorption of antibiotics to biofilm. Water Res 45(6):2270–2280. doi:10.1016/j.watres.2010.11.013 CrossRefGoogle Scholar
  55. Xie Y, Huang G (2014) Development of an inexact two-stage stochastic model with downside risk control for water quality management and decision analysis under uncertainty. Stoch Environ Res Risk Assess 28(6):1555–1575. doi:10.1007/s00477-013-0834-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sylvain Coutu
    • 1
  • Timothée Pouchon
    • 2
  • Pierre Queloz
    • 3
  • Nathalie Vernaz
    • 4
  1. 1.School of Earth ScienceStanford UniversityStanfordUSA
  2. 2.Chair of Computational Mathematics and Numerical AnalysisEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Laboratory of EchohydrologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Pharmacy DepartmentGeneva University Hospitals (HUG)GenevaSwitzerland

Personalised recommendations