Skip to main content

Advertisement

Log in

Changing structure of precipitation evolution during 1957–2013 in Yangtze River Delta, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Based on the daily precipitation of 16 rain gauges in Yangtze River Delta (YRD), the spatial and temporal changing properties of precipitation structure during 1957–2013 are investigated in the view of consecutive rainy duration. The results show that: (1) increasing precipitation amount can be detected in YRD while rainy days exhibit decreasing tendency over the basin. So precipitation intensity has been increasing in the past 57 years. (2) During the past 57 years, the mean wet periods become shorter over most of YRD. Wet periods with short duration show upward occurrence and fractional contribution to annual precipitation. Being shorter, wet periods in Yangtze River Delta are characterized by intensified precipitation, which may result in high risk of flash flood. (3) Extreme precipitation events during 1957–2013 are more evidently associated with short wet periods and peak for 2-day duration both in occurrence and fractional contribution. (4) An combination of climate change and urbanization intensifies the change in the distribution of temporal evolution of precipitation structure towards the precipitation events with shorter duration and higher intensity. Therefore, these changing properties are of significance to understanding the impact of climate change and human interference on hydrological processes and the flood prevention in the future in Yantze River Delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Chen YD, Zhang Q, Chen XH, Wang P (2012) Multiscale variability of streamflow changes in the Pearl River basin, China. Stoch Environ Res Risk Assess 26:235–246. doi:10.1007/s00477-011-0495-3

    Article  CAS  Google Scholar 

  • Degefu MA, Bewket W (2014) Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Reg Environ Chang 14:799–810. doi:10.1007/s10113-013-0538-z

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  CAS  Google Scholar 

  • Fu AH, Chen YN, Li WH, Li BF, Yang YH, Zhang SH (2013) Spatial and temporal patterns of climate variations in the Kaidu River Basin of Xinjiang, Northwest China. Quat Int 311:117–122. doi:10.1016/j.quaint.2013.08.041

    Article  Google Scholar 

  • Gao G, Chen DL, Xu CY, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. J Geophys Res Atmos. doi:10.1029/2006jd008010

    Google Scholar 

  • Huang J, Sun SL, Zhang JC (2013) Detection of trends in precipitation during 1960–2008 in Jiangxi province, southeast China. Theor Appl Climatol 114:237–251. doi:10.1007/s00704-013-0831-2

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change

  • Joseph JF, Falcon HE, Sharif HO (2013) Hydrologic trends and correlations in South Texas River Basins: 1950–2009. J Hydrol Eng 18:1653–1662. doi:10.1061/(asce)he.1943-5584.0000709

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Griffin, London

    Google Scholar 

  • Labat D, Godderis Y, Probst JL, Guyot JL (2004) Evidence for global runoff increase related to climate warming. Adv Water Resour 27:631–642. doi:10.1016/j.advwatres.2004.02.020

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric test against trend. Econometrika 13:245–259

    Article  Google Scholar 

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517. doi:10.1038/415514a

    Article  CAS  Google Scholar 

  • Mitchell Jr J, Dzerdzeevskii B, Flohn H, Hofmeyr W, Lamb H, Rao K, Wallén C (1966) Climatic change: Technicall Note No. 79, report of a working group of the Commission for Climatology. WMO

  • Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrol 367:62–69. doi:10.1016/j.jhydrol.2008.12.025

    Article  Google Scholar 

  • Qian WH, Fu JK, Yan ZW (2007) Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys Res Lett. doi:10.1029/2007gl029631

    Google Scholar 

  • Sang YF (2013) Wavelet entropy-based investigation into the daily precipitation variability in the Yangtze River Delta, China, with rapid urbanizations. Theor Appl Climatol 111:361–370. doi:10.1007/s00704-012-0671-5

    Article  Google Scholar 

  • Sang YF, Wang ZG, Li ZL, Liu CM, Liu XJ (2013) Investigation into the daily precipitation variability in the Yangtze River Delta, China. Hydrol Process 27:175–185. doi:10.1002/hyp.9202

    Article  Google Scholar 

  • Tu XJ, Zhang Q, Singh VP, Chen XH, Liu CL, Wang SB (2012) Space-time changes in hydrological processes in response to human activities and climatic change in the south China. Stoch Environ Res Risk Assess 26:823–834. doi:10.1007/s00477-011-0516-2

    Article  Google Scholar 

  • Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17. doi:10.1002/joc.3657

    Article  Google Scholar 

  • Wang S, Zhang M, Wang B, Sun M, Li X (2013) Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat Int 313–314:110–117. doi:10.1016/j.quaint.2013.03.037

    Article  Google Scholar 

  • Xu YP, Xu JT, Ding JJ, Chen Y, Yin YX, Zhang XQ (2010) Impacts of urbanization on hydrology in the Yangtze River Delta, China. Water Sci Technol 62:1221–1229. doi:10.2166/wst.2010.391

    Article  Google Scholar 

  • Yang M, Xu Y, Pan G, Han L (2014) Impacts of ubanization on precipitation in Taihu Lake Basin, China. J Hydrol Eng 19:739–746. doi:10.1061/(ASCE)HE.1943-5584.0000852

    Article  Google Scholar 

  • Zeng HL, Gao XQ, Zhang W (2005) Evolution characteristics of the precipitation in the Yangtze River delta based on the probability density. Chin Phys 14:1265–1271

    Article  Google Scholar 

  • Zhai P, Pan X (2003) Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geogr Sin 58:1–10

    Google Scholar 

  • Zhai PM, Zhang XB, Wan H, Pan XH (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/jcli-3318.1

    Article  Google Scholar 

  • Zhai P, Wang C, Li W (2007) A review on study of change in precipitation extremes. Adv Clim Change Res 3:144–148 (in Chinese)

    Google Scholar 

  • Zhang Q, Xu C-Y, Zhang Z, Chen YD, Liu C-l, Lin H (2008) Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J Hydrol 353:215–227. doi:10.1016/j.jhydrol.2007.11.023

    Article  Google Scholar 

  • Zhang N, Gao ZQ, Wang XM, Chen Y (2010a) Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor Appl Climatol 102:331–342. doi:10.1007/s00704-010-0263-1

    Article  Google Scholar 

  • Zhang Q, Xu CY, Tao H, Jiang T, Chen YD (2010b) Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stoch Environ Res Risk Assess 24:349–358. doi:10.1007/s00477-009-0324-0

    Article  CAS  Google Scholar 

  • Zhang Q, Li JF, Singh VP, Xu CY, Bai YG (2012a) Changing structure of the precipitation process during 1960–2005 in Xinjiang, China. Theor Appl Climatol 110:229–244. doi:10.1007/s00704-012-0611-4

    Article  Google Scholar 

  • Zhang Q, Singh VP, Peng JT, Chen YD, Li JF (2012b) Spatial-temporal changes of precipitation structure across the Pearl River basin, China. J Hydrol 440:113–122. doi:10.1016/j.jhydro1.2012.03.037

    Article  Google Scholar 

  • Zhang Q, Peng J, Singh VP, Li J, Chen YD (2014) Spatio-temporal variations of precipitation in arid and semiarid regions of China: the Yellow River basin as a case study. Glob Planet Chang 114:38–49. doi:10.1016/j.gloplacha.2014.01.005

    Article  Google Scholar 

  • Ziegler AD, Sheffield J, Maurer EP, Nijssen B, Wood EF, Lettenmaier DPL (2003) Detection of intensification in global- and continental-scale hydrological cycles: temporal scale of evaluation. J Clim 16:535–547

    Article  Google Scholar 

  • Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37:L06704. doi:10.1029/2010gl042468

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged the suggestions and comments by the Editor in Chief and reviewers. This work was financially supported by the National Natural Science Fund of China (No. 41371046), the Water Resources Public-Welfare Program (Grant No. 201201072, 201301075) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20131276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youpeng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Xu, Y., Yang, L. et al. Changing structure of precipitation evolution during 1957–2013 in Yangtze River Delta, China. Stoch Environ Res Risk Assess 29, 2201–2212 (2015). https://doi.org/10.1007/s00477-015-1034-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1034-4

Keywords

Navigation