Skip to main content
Log in

Liouville equation-based stochastic model for shoreline evolution

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Long-term shoreline evolution due to longshore sediment transport is one of the key processes that need to be addressed in coastal engineering design and management. To adequately represent the inherent stochastic nature of the evolution processes, a probability density evolution model based on a Liouville-type equation is proposed for predicting the shoreline changes. In this model, the standard one-line beach evolution model that is widely used in coastal engineering design is reformulated in terms of the probability density function of shoreline responses. A computational algorithm involving a total variation diminishing scheme is employed to solve the resulting equation. To check the accuracy and robustness of the model, the predictions of the model are evaluated by comparing them with those from Monte Carlo simulations for two idealised shoreline configurations involving a single long jetty perpendicular to a straight shoreline and a rectangular beach nourishment case. The pertinent features of the predicted probabilistic shoreline responses are identified and discussed. The influence of the density distributions of the input parameters on the computed results is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a 1 :

Constant in the expression for q l0 (\( \frac{{{\text{m}}^{ 2} \;{\text{s}}^{ 2} }}{\text{kg}} \))

B :

Operator

C gb :

Wave group celerity (m/s)

C v :

Coefficient of variance, 0 ≤ C v ≤ 1, defined as the ratio of the standard deviation to the mean

d:

Difference operator

d b :

Breaker depth (m)

D b :

Standard deviation of H b, confirmed to a normal distribution (m)

d c :

Closure depth (m)

E b :

Wave energy evaluated at the breaking point (kN)

g :

Acceleration of gravity (m/s2)

h b :

Discrete wave height at breaking (m)

H b :

Wave height at breaking (m)

H s :

Significant wave height (m)

i :

Cell number alongshore

i b :

Node number in PDF of H b

j :

Node number in cross-shore

k :

Time step of one-line model

k 1 :

Sediment transport coefficient, or, dimensionless empirical coefficient

K b :

Mean of H b

l :

Distance alongshore (m)

m :

Number of time steps in TVD scheme

m y :

Number of the discrete distribution in cross-shore direction

N b :

Number of uniformly meshing discretisation for each time increment

N p :

Total number of the selected nodes, = 2m y  × N b

n r :

Dimension of excitation vector

n s :

Void ratio of sand, ≈0.4

n t :

Number of time steps

p :

Probability density function or PDF

\( \hat{p} \) :

Mixing ratio at the cell edges

q l :

Volumetric long-shore sediment transport rate (m3/s)

q l0 :

Amplitude of volumetric long-shore sediment transport rate (m3/s)

r c :

Lattice ratio

t :

Time (s)

t 0 :

Initial time (s)

t d :

Time token for running the deterministic model (s)

t k :

Time in kth step of one-line shoreline model (s)

t m :

Time in mth step (s) of TVD scheme

t LE :

Time consumed by solving LE-based model (s)

TVm :

Total variation at time step m

v :

\( \dot{Y} \)

v m :

Mean of v

x :

Distance alongshore (m)

y :

Shoreline position in cross-shore direction (m)

Y :

Stochastic process or random variable of shoreline position or random state (which is a component of state vector)

Y 0 :

Initial random state or random variable of shoreline position Y

Y F :

Extension distance seaward from the rectangular beach

y m :

Expected value or mean value of y

Y m0 :

Initial mean value of Y

y max :

Maximum discrete shoreline position

y min :

Minimum discrete shoreline position

y s :

Standard deviation of y

Y s0 :

Initial standard deviation of Y

\( \dot{Y} \) :

Time derivate of Y, = −H 5/2b ζ(yt), or the ‘velocity’ of the response for a prescribed h b, called advection velocity coefficient

Z :

Random parameter with known PDFs

Z 0 :

Initial Z

α 0 :

Incident angle of breaking waves relative to x (°)

α b :

Angle of breaking waves to the local shoreline (°)

γ :

Ratio of wave height to water depth at breaking, \( = {\raise0.7ex\hbox{${H_{\text{b}} }$} \!\mathord{\left/ {\vphantom {{H_{\text{b}} } {d_{\text{b}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${d_{\text{b}} }$}} \)

γ LH :

Log-normal distribution location parameter of H b

γ LY :

Log-normal distribution location parameter of Y 0

γ WH :

Weibull distribution location parameter of H b

γ WY :

Weibull distribution location parameter of Y 0

Δh b :

Size increment in h b (m)

Δt k :

Time increment of one-line shoreline model (s)

Δt m :

Time increment of TVD (s)

Δx :

Size increment in along-shore direction (m)

Δy :

Size increment in cross-shore direction (m)

ζ :

\( = \frac{1}{8}\rho_{\text{w}} g^{3/2} \gamma^{ - 1/2} a_{1} \frac{1}{{d_{\text{c}} }}\frac{{\partial ({ \sin }(2\alpha_{\text{b}} ))}}{\partial x} \)

η :

Operator of shoreline position evolution, = −H 2.5b ζ(yt)

η :

Operator vector of determination of a dynamical state, may be determined by an appropriate deterministic shoreline evolution model

θ :

\( = \frac{{\left( {p_{j,m} - p_{j - 1,m} } \right)}}{{p_{j + 1,m} - p_{j,m} }} \)

λ :

Ratio, \( = \frac{{\varDelta t_{m} }}{{\varDelta t_{k} }} > 1 \)

μ LH :

Log-normal distribution scale parameter of H b

μ LY :

Log-normal distribution scale parameter of Y 0

μ WH :

Weibull distribution scale parameter of H b

μ WY :

Weibull distribution scale parameter of Y 0

ρ s :

Mass density of the sediment grains (kg/m3)

ρ w :

Mass density of water (kg/m3)

σ LH :

Log-normal distribution shape parameter of H b

σ LY :

Log-normal distribution shape parameter of Y 0

σ WH :

Weibull distribution shape parameter of H b

σ WY :

Weibull distribution shape parameter of Y 0

φ :

Flux limiter

Ω z :

Distribution domain

References

  • Arimitsu T (2009) Non-equlibrium thermo field dynamics and its application to error-correction for spatially correlated quantum errors. Interdiscip Inform Sci 15(3):441–471

    Google Scholar 

  • Battjes JA (1972) Long-term wave height distribution at seven stations around the British Isles. Deutsche Hydrographische Zeitschrift J 25:179–189

    Article  Google Scholar 

  • Benassai E, Calabrese M, Uberti GSD (2001) A probabilistic prediction of beach nourishment evolution. MEDCOAST01, In: The 5th international conference on mediterranean coast environment, 2001, Yasmine Beach Resort, Hammamet, Tunisia

  • Bodo BA, Thompson ME, Unny TE (1987) A review on stochastic differential equations for applications in hydrology. Stoch Hydrol Stoch Hydraul 2:81–100

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions, 1, model description and validation. J Geophys Res 104(C4):7649–7666

    Article  Google Scholar 

  • Burcharth HF (1992) Uncertainty related to environmental data and estimated extreme events. Final Report of PIANC Working Group 12, Group B

  • Camfield FE, Morang A (1996) Defining and interpreting shoreline change. Ocean Coast Manag 32:129–151

    Article  Google Scholar 

  • Chen JB, Li J (2005) Dynamic response and reliability analysis of nonlinear stochastic structures. Probab Eng Mech 20(1):33–44

    Article  Google Scholar 

  • Chen JB, Li J (2009) A note on the principle of preservation of probability and probability density evolution equation. Probab Eng Mech 24:51–59

    Article  CAS  Google Scholar 

  • Chen JB, Zhang SH (2013) Improving point selection in cubature by a new discrepancy. SIAM J Sci Comput 35(5):A2121–A2149

    Article  Google Scholar 

  • Cowell PJ, Thom BG, Jones RA, Everts CH, Simanovic D (2006) Management of uncertainty in predicting climate-change impacts on beaches. J Coast Res 22(1):232–245

    Article  Google Scholar 

  • de Vriend HJ, Capobianco M, Chesher T, Swart HED, Latteaux B, Stive MJF (1993) Approaches to long-term modelling of coastal morphology: a review. Coastal Eng 21:225–269

    Article  Google Scholar 

  • Dean RG (1983) Principles of beach nourishment. In: Komar PD (ed) CRC handbook of coastal processes and erosion, vol 11. CRC Press, Boca Raton, pp 217–232

    Google Scholar 

  • Dean RG, Grant J (1989) Development of methodology for thirty-year shoreline projections in the vicinity of beach nourishment projects. UFL/COEL-89/026. Gainesville, University of Florida

  • Dong P, Chen H (1999) Probabilistic predictions of time dependent long-term beach erosion risks. Coast Eng 36:243–261

    Article  Google Scholar 

  • Dong P, Chen H (2000) A simple life-cycle method for predicting extreme shoreline erosion. Stoch Environ Res Risk Assess 14:79–89

    Article  Google Scholar 

  • Dong P, Wu XZ (2013) Application of a stochastic differential equation to the prediction of shoreline evolution. Stoch Environ Res Risk Assess 27(8):1799–1814

    Article  Google Scholar 

  • Dostupov BG, Pugachev VS (1957) The equation for the integral of a system of ordinary differential equations containing random parameters. Automatika i Telemekhanika 18:620–630

    Google Scholar 

  • Ehrendorfer M (1994) The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: theory. Mon Weather Rev 122:703–713

    Article  Google Scholar 

  • Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, Berlin

    Book  Google Scholar 

  • Govindaraju RS, Kavvas ML (1991) Stochastic overland flows. Part 2: numerical solutions evolutionary PDFs. Stoch Hydrol Hydraul 5:105–124

    Article  Google Scholar 

  • Guedes Soares C, Henriques AC (1996) Statistical uncertainty in long-term distributions of significant wave height. J Offshore Mech Arctic Eng 11:284–291

    Article  Google Scholar 

  • Guedes Soares C, Viana PC (1988) Sensitivity of the response of marine structures to wave climatology. In: Schrefer BA, Zienkiewicz OC (eds) Computer modelling in ocean engineering. A.A. Balkema Publishers, Lisse, pp 487–492

    Google Scholar 

  • Hanson H, Kraus NC (1989) GENESIS: Generalized model for simulating shoreline change. Report 1, Technical Report CERC-89-19. Vicksburg

  • Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357–393

    Article  Google Scholar 

  • Jasper NH (1956) Statistical distribution patterns of ocean waves and of wave-induced ship stresses and motions with engineering applications. Trans-Soc Naval Archit Marine Eng 64:375–432

    Google Scholar 

  • Jin M (1994) Random differential equation modelling for backwater profile computation. J Hydraul Res 32(1):131–144

    Article  Google Scholar 

  • Johnson EA, Wojtkiewicz SF, Bergman LA, Spencer BF (1997) Observations with regards to massively parallel computation for Monte Carlo simulation of stochastic dynamical systems. Int J Nonlinear Mech 32(4):721–734

    Article  Google Scholar 

  • Kamphuis JW (1999) Marketing uncertainty. In: Proceedings of the COPEDEC V., Cap Town, pp 2088–2099

  • Kamphuis JW (2006) Beyond the limits of coastal engineering. In: Proceedings of the 30th ICCE, San Diego, pp 1938–1950

  • Kavvas ML (2003) Nonlinear hydrologic processes: conservation equations for determining their means and probability distributions. J Hydrologic Eng 8:44–53

    Article  Google Scholar 

  • Kim S, Jang SH (2007) Analytical derivation of steady state soil water probability distribution function under rainfall forcing using cumulant expansion theory. KSCE J Civil Eng 11:227–232

    Article  CAS  Google Scholar 

  • Komar PD (1983) Computer models of shoreline changes. In: Komar PD (ed) CRC handbook of coastal processes and erosion, vol 11. CRC Press, Boca Raton, pp 205–216

    Google Scholar 

  • Kubo R (1963) Stochastic liouville equations. J Math Phys 4(2):174–183

    Article  Google Scholar 

  • Laney CB (1998) Computational gas dyanamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Larson M, Hanson H, Kraus NC (1997) Analytical solutions of one-line model for shoreline change near coastal structures. J Waterway Port Coast Ocean Eng 123(4):180–191

    Article  Google Scholar 

  • Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217–237

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    Article  Google Scholar 

  • Li J, Chen JB (2006) The dimension-reduction strategy via mapping for probability density evolution analysis of nonlinear stochastic systems. Probab Eng Mech 21(4):442–453

    Article  CAS  Google Scholar 

  • Li J, Chen JB (2008) The principle of preservation of probability and the generalized density evolution equation. Struct Safety 30(1):65–77

    Article  Google Scholar 

  • Medellín G, Medina R, Falqués A, González M (2008) Coastline sand waves on a low-energy beach at “El Puntal” spit, Spain. Mar Geol 250:143–156

    Article  Google Scholar 

  • Moan T, Gao Z, Ayala-Uraga E (2005) Uncertainty of wave-induced response of marine structures due to long-term variation of extratropical wave conditions. Mar Struct 18:359–382

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    Google Scholar 

  • Paul W, Baschnagel J (2000) Stochastic processes. Springer, From physics to Finance

    Google Scholar 

  • Pelnard-Considère (1956) Essai de theorie de l’evolution des formes de rivage enplages de sable et de galets. Fourth Journess de I’Hydralique, les energies de la Mer Question III(1):289–298

  • Pilkey OH, Cooper JAG (2002) Longshore transport volumes: a critical view. J Coast Res ICS Proceedings 2002:572–580

    Google Scholar 

  • Razi M, Attar PJ, Vedula P (2013) Uncertainty quantification for multidimensional dynamical systems based on adaptive numerical solution of liouville equation. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 24

  • Reeve DE (2006) Explicit expression for beach response to non-stationary forcing near a groyne. J Waterway Port Coast Ocean Eng 132(2):125–132

    Article  Google Scholar 

  • Reeve DE, Spivack M (2004) Evolution of shoreline position moments. Coast Eng 51(8–9):661–673

    Article  Google Scholar 

  • Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions, 2, verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  • Risken H (1989) The Fokker-Planck Equation, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ruggiero P, Kaminsky GM, Gelfenbaum G (2003) Linking proxy-based and datum-based shorelines on a high-energy coastline: implications for shoreline change analyses. J Coast Res 38:57–82

    Google Scholar 

  • Ruggiero P, Buijsman M, Kaminsky GM, Gelfenbaum G (2010) Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Mar Geol 273:127–140

    Article  Google Scholar 

  • Shibutani Y, Kuroiwa M, Matsubara Y, Kim M, Abualtaef M (2009) Development of N-line numerical model considering the effects of beach nourishment. J Coastal Res SI56:554–558

    Google Scholar 

  • Shvidler M, Karasaki K (2003) Probability density functions for solute transport in random field. Transp Porous Media 50(3):243–266

    Article  CAS  Google Scholar 

  • Soong TT (1973) Random differential equations in science and engineering. Academic Press, New York

    Google Scholar 

  • Sweby PK (1985) High resolution TVD schemes using flux limiters. Lect Appl Math 22:289–309

    Google Scholar 

  • Syski R (1967) Stochastic differential equations. In: Saaty TL (ed) Modern nonlinear equations. McGraw-Hill, New York

    Google Scholar 

  • Tanimura Y (2006) Stochastic Liouville, Langevin, Fokker-Planck, and Master equation approaches to quantum dissipative systems. J Phys Soc Jpn 75(8):1–39

    Article  Google Scholar 

  • US Army Corps of Engineers (1984) Shore protection manual. Coastal Engineering Research Center, Washington

    Google Scholar 

  • van Leer B (1974) Towards the ultimate conservative difference scheme. II: monotonicity and conservation combined in a second order scheme. J Comput Phys 14:361–370

    Article  Google Scholar 

  • Victoir N (2004) Asymmetric cubature formulae with few points in high dimension for symmetric measures. SIAM J Numer Anal 42(1):209–227

    Article  Google Scholar 

  • Vrijling JK, Meijer GJ (1992) Probabilistic coastline position computations. Coast Eng 17(1–2):1–23

    Article  Google Scholar 

  • Wang B, Reeve D (2010) Probabilistic modelling of long-term beach evolution near segmented shore-parallel breakwaters. Coast Eng 57:732–744

    Article  Google Scholar 

  • Wu XZ (2013) Probabilistic slope stability analysis by a copula-based sampling method. Comput Geosci 17(5):739–755

    Article  Google Scholar 

  • Wu XZ (2015a) Probabilistic solution of floodplain inundation equation. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1025-5

  • Wu XZ (2015b) Assessing the correlated performance functions of an engineering system via probabilistic analysis. Struct Safety 52:10–19

    Article  CAS  Google Scholar 

  • Zacharioudaki A, Reeve DE (2011) Shoreline evolution under climate change wave scenarios. Clim Change 108:73–105

    Article  Google Scholar 

Download references

Acknowledgments

The support of the UK Engineering and Physical Science Research Council as part of a research project under Grant No. GR\L53953 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.Z., Dong, P. Liouville equation-based stochastic model for shoreline evolution. Stoch Environ Res Risk Assess 29, 1867–1880 (2015). https://doi.org/10.1007/s00477-015-1029-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1029-1

Keywords

Navigation