Skip to main content

Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review

Abstract

The generalized likelihood uncertainty estimation (GLUE) technique is an innovative uncertainty method that is often employed with environmental simulation models. Over the past years, hydrological literature has seen a large increase in the number of papers dealing with uncertainty. There are now a lot of citations to their original paper which illustrates GLUE tremendous impact. GLUE’s popularity can be attributed to its simplicity and its applicability to nonlinear systems, including those for which a unique calibration is not apparent. The GLUE was introduced for use in uncertainty analysis of watershed models has now been extended well beyond rainfall-runoff watershed models. Given the widespread adoption of GLUE analyses for a broad range or problems, it is appropriate that the validity of the approach be examined with care. In this article, we present an overview of the application of GLUE for assessing uncertainty distribution in hydrological models particularly surface and subsurface hydrology and briefly describe algorithms for sampling of the prior parameter in hydrologic simulation models.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abbaspour KC, Johnson CA, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3(4):1340–1352

    Article  Google Scholar 

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Spatiallydistributed modelling of hydrology and water quality in the pre alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Adams, B. and Reckhow, K.H.(2001). An examination of the scientific basis for mechanisms and parameters in water quality models. www2.ncsu.edu/ncsu/CIL/WRRI/AdamsReckhow.pdf

  • Ajami NK, Duan QY, Sorooshian S (2007) An integrated hydrologic Bayesian multimodal combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43 (1), Art. No. W01403

  • Aronica G, Bates PD, Horritt MS (2002a) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Proc 16:2001–2016

    Article  Google Scholar 

  • Aronica G, Bates PD, Horrit MS (2002b) Assessing the uncertainty in distributed model prediction using observed binary pattern information with GLUE. Hydrol Process 16:2001–2016

    Article  Google Scholar 

  • Beck MB (1987) Uncertainty in water quality models. Water Resour Res 23(8):1393

    CAS  Article  Google Scholar 

  • Beven KJ (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36

    Article  Google Scholar 

  • Beven KJ, Binley A (1992) The future of distributed models, model calibration and uncertainty prediction. Hydrol Process 6:279–298

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29

    Article  Google Scholar 

  • Beven KJ, Smith P, Freer J (2008) So just why would a modeler choose to be incoherent? J Hydrol 354(1–4):15–32. doi:10.1016/j.jhydrol.2008.02.007

  • Blasone RS, Vrugt JA, Madsen H et al (2008a) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 2008(31):630–648

    Article  Google Scholar 

  • Blasone RS, Vrugt JA, Henrik M, Rosbjerg D, Robinson BR, Zyvoloski GA (2008b) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31:630–648

    Article  Google Scholar 

  • Blasone R-S, Madsen H, Rosbjerg D (2008c) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrol 353:18–32

    Article  Google Scholar 

  • Blasone R-S, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008d) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31:630–648

    Article  Google Scholar 

  • Blazkova S, Beven KJ (2002) Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty). Water Resour Res 38(8):1139. doi:10.1029/2001WR000500

    Google Scholar 

  • Brazier RE, Beven KJ, Anthony SG, Rowan JS (2001) Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions. Earth Surf Proc Land 26:1333–1352

    Article  Google Scholar 

  • Cameron DS, Beven KJ, Tawn J, Blazkova S, Naden P (1999) Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). J Hydrol 219:169–187

    Article  Google Scholar 

  • Carpenter TM, Georgakakos KP (2004) Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrological model. J Hydrol 298:202–221

    Article  Google Scholar 

  • Chau KW, Wu C, Li Y (2005) Comparison of several flood forecasting models in Yangtze River. J Hydrol Eng ASCE 10(6):485–491

    Article  Google Scholar 

  • Chen W, Chau KW (2006) Intelligent manipulation and calibration of parameters for hydrological models. Int J Environ Pollut 28(3–4):432–447

    Article  Google Scholar 

  • Cheng CT, Chau KW, Li X-Y (2007) Hydrologic uncertainty for bayesian probabilistic forecasting model based on BP ANN. Third International Conference on Natural Computation. IEEE Computer Society, Haikou, China, pp. 197–201

  • Chowdhury S, Sharma A (2007) Mitigating parameter bias in hydrological modelling due to uncertainty in covariates. J Hydrol 340:197–204

    Article  Google Scholar 

  • Christensen S (2004) A synthetic groundwater modeling study of the accuracy of GLUE uncertainty intervals. Nordic Hydrol 35:45–59

    Google Scholar 

  • Doherty J (2005) PEST: software for model-independent parameter estimation. Water Mark Numerical Computing, Australia

    Google Scholar 

  • Engeland K, Xu C-Y, Gottschalk L (2005) Assessing uncertainties in a conceptual water balance model using Bayesian methodology. Hydrol Sci J 50(1):45–63

    Google Scholar 

  • Feyen L, Beven KJ, De Smedt F, Freer JE (2001) Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resour Res 37(3):625–638

    Article  Google Scholar 

  • Franks SW, Beven KJ, Quinn PF, Wright IR (1997) On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric For Met 86:63–75

    Article  Google Scholar 

  • Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173

    Article  Google Scholar 

  • Freni G, Mannina G, Viviani G (2008a) Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in the GLUE methodology. Water Res 42(8–9):2061–2072

    CAS  Article  Google Scholar 

  • Freni G, Mannina G, Viviani G (2008b) Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in the GLUE methodology. Water Res 42(8–9):2061–2072

    CAS  Article  Google Scholar 

  • Freni G, Mannina G, Viviani G (2009a) Identifiability analysis for receiving water body quality modeling. Environ Model Softw 24(1):54–62

    Article  Google Scholar 

  • Freni G, Mannina G, Viviani G (2009b) Uncertainty in urban stormwater quality modelling: the influence of likelihood measure formulation in the GLUE methodology. Sci Total Environ 408(1):138–145

    CAS  Article  Google Scholar 

  • Freni G, Mannina G, Viviani G (2009c) Assessment of data availability influence on integrated urban drainage modelling uncertainty. Environ Model Softw 24(10):1171–1181

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Georgakakos KP, Seo DJ, Gupta H et al (2004) Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J Hydrol 298:222–241

    Article  Google Scholar 

  • Goodarzi E, Mirzaei M, Ziaei M (2012) Evaluation of dam overtopping risk based on univariate and bivariate flood frequency analyses. Can J Civ Eng 39(4):374–387

    Article  Google Scholar 

  • Gupta HV, Beven KJ, Wagener T (2005) Model calibration and uncertainty estimation. In: Anderson MG (ed) Encyclopedia of hydrological sciences. John Wiley, New York, pp 2015–2031

    Google Scholar 

  • Hankin BG, Hardy R, Kettle H, Beven KJ (2001) Using CFD in a GLUE framework to model the flow and dispersion characteristics of a natural fluvial dead zone. Earth Surf Proc Land 26:667–687

    Article  Google Scholar 

  • Hansson K, Lundin C (2006) Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data. Cold Reg Sci Tech 44:20–37

    Article  Google Scholar 

  • Heidari A, Saghafian B, Maknoon R (2006) Assessment of flood forecasting lead time based on generalized likelihood uncertainty estimation. Stochast Environ Res Risk Assess 20(5):363–380

    Article  Google Scholar 

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley and Sons, New York

  • Hornberger GM, Spear RC (1981) An approach to the preliminary analysis of environmental systems. J Env Manag 12:7–18

    Google Scholar 

  • Jensen JB (2003) Parameter and uncertainty estimation in groundwater modelling. PhD thesis, Department of Civil Engineering, Aalborg University, Series Paper No. 23

  • Kavetski D, Franks S, Kuczera G (2002) Confronting input uncertainty in environmental modelling. In: Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU Water Science and Applications Series, Duan, pp 49–68

    Google Scholar 

  • Kavetski D, Kuczera G, Franks SW (2006a) Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory Water Resour Res 42:W03407

    Google Scholar 

  • Kavetski D, Kuczera G, Franks SW (2006b) Bayesian analysis of input uncertainty in hydrological modeling: 2. Appl Water Resour Res 42(581):W03408

    Google Scholar 

  • Lamb R, Beven K, Myrabø S (1998) Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model. Adv Water Res 22(4):305–317

    Article  Google Scholar 

  • Lenhart T, Eckhardt K, Fohrer N, Frede HG (2007) Comparison of two different approaches of sensitivity analysis. Phys Chem Earth 27:645–654

    Article  Google Scholar 

  • Lindblom EU, Madsen H, Mikkelsen PS (2007) Comparative uncertainty analysis of copper loads in stormwater systems using GLUE and grey-box modelling. Water Sci. Technol Water Supply 56(6):11–18

    CAS  Article  Google Scholar 

  • Mannina G, Viviani G (2009) Parameter uncertainty analysis of water quality model for small river, 18th World IMACS/MODSIM Congress, Cairns, Australia 13–17 July 2009

  • Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330:368–381. doi:10.1016/j.hydrol.2006.04.046

    Article  Google Scholar 

  • Marshall L, Nott D, Sharma A (2007) Towards dynamic catchment modelling: a Bayesian hierarchical modelling framework. Hydrol Process 21:847–861

    Article  Google Scholar 

  • McMichael CE, Hope AS, Loaiciga HA (2006) Distributed hydrological modelling in California semi-arid shrublands: Mike SHE model calibration and uncertainty estimation. J Hydrol 317(3–4):307–324

    Article  Google Scholar 

  • Mertens J, Madsen H, Feyen L et al (2004a) Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. J Hydrol 294:251–269

    Article  Google Scholar 

  • Mertens J, Madsen H, Feyen L, Jacques D, Feyen J (2004b) Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. J Hydrol 294(4):251–269

    Article  Google Scholar 

  • Migliaccio KW, Chaubey I (2008) Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. J Hydrol Eng-ASCE 13:258–269

    Article  Google Scholar 

  • Mirzaei M, Galavi H, Faghih M, Huang YF, Lee TS, El-Shafie A (2013a) Model calibration and uncertainty analysis of runoff in the Zayanderood river basin using generalized likelihood uncertainty estimation (GLUE) method. J Water Supply 62(5):309–320

    Article  Google Scholar 

  • Mirzaei M, Huang Y, Lee TS, El-Shafie A, Ghazali A (2013b) Quantifying uncertainties associated with depth duration frequency curves. Nat Hazards. doi:10.1007/s11069-013-0819-3

    Google Scholar 

  • Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall–runoff simulations. Water Resour Res 41:W08406. doi:10.1029/2004WR003826

    Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306:127–145

    Article  Google Scholar 

  • Refsgaard JC, Storm B (1995) MIKE SHE. In: Miller PC (ed) Computer Models of Catchment Hydrology. Water Resources Publications, Colorado, pp 809–846

    Google Scholar 

  • Romanowicz R, Beven KJ, Tawn J (1994) Evaluation of predictive uncertainty in non-linear hydrological models using a Bayesian approach, in statistics for the environment. In: Barnett V, Turkman KF (eds) Water Related Issues, vol 2. John Wiley, Hoboken, pp 297–317

    Google Scholar 

  • Romanowicz RJ, Beven KJ, Tawn J (1996) Bayesian calibration of flood inundation models. In: Anderson MG, Walling DE (eds) Floodplain processes. Wiley, Chichester, pp 333–360

    Google Scholar 

  • Schaefli B, Talamba DB, Musy A (2007) Quantifying hydrological modeling errors through a mixture of normal distributions. J Hydrol 332:303–315

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Lee SU, Batchelor R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44:W00B06. doi:10.1029/2008WR006822

    Google Scholar 

  • Tadesse A, Anagnostou EN (2005) A statistical approach to ground radar-rainfall estimation. J Atm Ocean Tech 22(11):1055–1071

    Article  Google Scholar 

  • Vachaud G, Chen T (2002) Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales; distributed versus stochastic non-distributed modeling. J Hydrol 264:101–112

    Article  Google Scholar 

  • Van Straten G (1998) Models for water quality management: the problem of structural change. Water Sci Technol 37(3):103–111

    Article  Google Scholar 

  • Vezzaro L, Ledin A, Mikkelsen PS (2010).“Integrated modelling of priority pollutants in stormwater systems.” In: Proceeding IDRA Conference, Palermo, Italy

  • Vogel RM, Stedinger JR, Batchelder R, Lee SU (2008) Appraisal of the Generalized Likelihood Uncertainty Estimation (GLUE) method. Water Resour Res 44(12)

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2008) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling. Stochastic Environ Res Risk Assess. doi:10.1007/s00477-008-0274-y

    Google Scholar 

  • Wang X, He X, Williams JR, Izaurralde RC, Atwood JD (2005) Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC. Trans Am Soc Agr Eng 48(3):1041–1054

    CAS  Article  Google Scholar 

  • Xiong L, O’Connor KM (2008) An empirical method toimprove the prediction limits of the GLUE methodology in rainfall–runoff modeling. J Hydrol 349(1–2):115–124

    Article  Google Scholar 

  • Xiong L, Wan M, Wei X, O'Connor KM (2009) Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol Sci J 54(5):852–871. doi:10.1623/hysj.54.5.852

  • Yang J, Reichert P, Abbaspour KC, Yang H (2007) Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference. J Hydrol 340:167–182

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358:1–23

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the High Impact Research Grant of the University of Malaya and Ministry of Education (UM.C/625/1/HIR/61, account number: H-16001-00-D000061) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mirzaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Huang, Y.F., El-Shafie, A. et al. Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch Environ Res Risk Assess 29, 1265–1273 (2015). https://doi.org/10.1007/s00477-014-1000-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-1000-6

Keywords

  • Uncertainty
  • GLUE
  • Hydrological modeling
  • Rainfall-runoff modeling
  • Water quality
  • Groundwater