Skip to main content

Advertisement

Log in

Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Urbanization is the most typical form of land use/cover change, and exploration of the driving mechanism of urban growth and the prediction of its future changes are very important for achieving urban sustainable development. In view of the ability of a multi-agent system to simulate a complex spatial system and from the perspective of combining macroscopic and microscopic decision-making behaviors of agents, a spatiotemporal dynamical urban growth simulation model based on the multi-agent systems has been developed. In this model, macroscopic land use planning behaviors implemented by macroagents and microscopic land use selection behaviors autonomously generated by microagents interact within two-dimensional spatial cells. Furthermore, the urbanization process is promoted through joint decision-making by macroagents and microagents. Considering the central region of the coastal industrial city Lianyungang as the study area, we developed three target scenarios on the basis of current trends, economic development priorities, and environmental protection priorities. Moreover, the corresponding urban growth scenarios were simulated and analyzed. The simulation results show that by combining the macroscopic and microscopic decision-making behaviors of agents to simulate spatiotemporal dynamical urban growth based on the multi-agent systems, the proposed model can provide a useful spatial exploratory tool for explaining the driving mechanism of urbanization and providing decision-making support for urban management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batty M, Xie Y (1994) From cells to cities. Environ Plan 21(7):31–48

    Article  Google Scholar 

  • Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric Econ 25(2–3):245–260

    Article  Google Scholar 

  • Bone C, Dragicevic S, White R (2011) Modeling-in-the-middle: bridging the gap between agent-based modeling and multi-objective decision-making for land use change. Int J Geogr Inf Sci 25(5):717–737

    Article  Google Scholar 

  • Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176(3):313–332

    Article  Google Scholar 

  • Brazel A, Gober P, Lee SJ, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E (2007) Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Climate Res 33(2):171–182

    Article  Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol 25(1):17–33

    Article  Google Scholar 

  • Clarke K (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan 24(2):247–261

    Article  Google Scholar 

  • Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61(4):257–271

    Article  Google Scholar 

  • Ding W, Wang R, Wu D, Liu J (2013) Cellular automata model as an intuitive approach to simulate complex land-use changes: an evaluation of two multi-state land-use models in the Yellow River Delta. Stoch Environ Res Risk Assess 27(4):1–9

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Glob consequences of land use. Science 309(5734):570–574

    Article  CAS  Google Scholar 

  • Grimm NB, Morgan Grove J, Pickett STA, Redman CL (2000) Integrated approaches to long-termstudies of urban ecological systems. Bioscience 50(7):571–584

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  CAS  Google Scholar 

  • Jenerette GD, Wu J (2001) Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landsc Ecol 16(7):611–626

    Article  Google Scholar 

  • Lempert R (2002) Agent-based modeling as organizational and public policy simulators. Proc Natl Acad Sci USA 99(Suppl 3):7195–7196

    Article  CAS  Google Scholar 

  • Li X, Liu X (2007) Defining agents’ behaviors to simulate complex residential development using multicriteria evaluation. J Environ Manag 85(4):1063–1075

    Article  Google Scholar 

  • Li X, Liu X (2008) Embedding sustainable development strategies in agent-based models for use as a planning tool. Int J Geogr Inf Sci 22(1):21–45

    Article  Google Scholar 

  • Li X, Yeh AG-O (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Sci 14(2):131–152

    Article  Google Scholar 

  • Li X, Yeh A (2004) Data mining of cellular automata’s transition rules. Int J Geogr Inf Sci 18(8):723–744

    Article  Google Scholar 

  • Li X, Yang Q, Liu X (2008) Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landsc Urban Plan 86(2):177–186

    Article  CAS  Google Scholar 

  • Li W, Wu C, Zang S (2012) Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches. Stoch Environ Res Risk Assess 28(4):1–12

    Google Scholar 

  • Ligmann-Zielinska A, Jankowski P (2007) Agent-based models as laboratories for spatially explicit planning policies. Environ Plan 34(2):316–335

    Article  Google Scholar 

  • Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL (2004) A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manag 72(1):43–55

    Article  Google Scholar 

  • Ligtenberg A, Beulens A, Kettenis D, Bregt AK, Wachowicz M (2009) Simulating knowledge sharing in spatial planning: an agent-based approach. Environ Plan 36(4):644–663

    Article  Google Scholar 

  • Liu J, Liu M, Tian H, Zhuang D, Zhang Z, Zhang W, Tang X, Deng X (2005) Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ 98(4):442–456

    Article  Google Scholar 

  • Liu X, Li X, Anthony G-OY (2006) Multi-agent systems for simulating spatial decision behaviors and land-use dynamics. Sci China Ser D 49(11):1184–1194

    Article  Google Scholar 

  • Liu X, Li X, Liu L, He J, Ai B (2008) A bottom-up approach to discover transition rules of cellular automata using ant intelligence. Int J Geogr Inf Sci 22(11–12):1247–1269

    Article  Google Scholar 

  • Liu X, Li X, Shi X, Zhang X, Chen Y (2010) Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int J Geogr Inf Sci 24(5):783–802

    Article  Google Scholar 

  • Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions—simulation of landscape transition with spatial agents. Environ Model Softw 18(6):553–563

    Article  Google Scholar 

  • Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc Ecol 17(4):327–339

    Article  Google Scholar 

  • Matthews R, Gilbert N, Roach A, Polhill JG, Gotts N (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22(10):1447–1459

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) Spatial pattern analysis program for quantifying landscape structure. Gen Tech Rep PNW-GTR-351 US Department of Agriculture, Forest Service, Pacific Northwest Research Station

  • Montgomery MR (2008) The urban transformation of the developing world. Science 319(5864):761–764

    Article  CAS  Google Scholar 

  • Pannell CW (2002) China’s continuing urban transition. Environ Plan A 34(9):1571–1590

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016

    Google Scholar 

  • Saarloos D, Arentze T, Borgers A, Timmermans H (2005) A multiagent model for alternative plan generation. Environ Plan 32(4):505–522

    Article  Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1(1):89–95

    Article  Google Scholar 

  • Tan R (2011) Reforming China’s land policy for its green target. Environment 53(6):29–33

    Article  Google Scholar 

  • Tan M, Li X, Xie H, Lu C (2005) Urban land expansion and arable land loss in China—a case study of Beijing–Tianjin–Hebei region. Land Use Policy 22(3):187–196

    Article  Google Scholar 

  • Tan R, Beckmann V, Qu F, Wu C (2012) Governing farmland conversion for urban development from the perspective of transaction cost economics. Urban Stud 49(10):2265–2283

    Article  Google Scholar 

  • Tian G, Yang Z, Xie Y (2007) Detecting spatiotemporal dynamic landscape patterns using remote sensing and the lacunarity index: a case study of Haikou city, China. Environ Plan 34(3):556

    Article  Google Scholar 

  • Tian G, Ouyang Y, Quan Q, Wu J (2011) Simulating spatiotemporal dynamics of urbanization with multi-agent systems—a case study of the Phoenix metropolitan region, USA. Ecol Model 222(5):1129–1138

    Article  Google Scholar 

  • Torrens PM (2006) Simulating sprawl. Ann Assoc Am Geogr 96(2):248–275

    Article  Google Scholar 

  • Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  • Walsh SJ, Malanson GP, Entwisle B, Rindfuss RR, Mucha PJ, Heumann BW, McDaniel PM, Frizzelle BG, Verdery AM, Williams NE (2013) Design of an agent-based model to examine population–environment interactions in Nang Rong District, Thailand. Appl Geogr 39:183–198

    Article  Google Scholar 

  • Wu F (2002) Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci 16(8):795–818

    Article  Google Scholar 

  • Wu J (2008) Making the case for landscape ecology an effective approach to urban sustainability. Landsc J 27(1):41–50

    Article  Google Scholar 

  • Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plan 25(1):103–126

    Article  Google Scholar 

  • Wu D, Liu J, Wang S, Wang R (2010) Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stoch Environ Res Risk Assess 24(2):235–245

    Article  CAS  Google Scholar 

  • Xie Y, Fan S (2012) Multi-city sustainable regional urban growth simulation—MSRUGS: a case study along the mid-section of Silk Road of China. Stoch Environ Res Risk Assess 28(4):1–13

    Google Scholar 

  • Xie Y, Batty M, Zhao K (2007a) Simulating emergent urban form using agent-based modeling: desakota in the Suzhou-Wuxian region in China. Ann Assoc Am Geogr 97(3):477–495

    Article  Google Scholar 

  • Xie Y, Fang C, Lin G, Gong H, Qiao B (2007b) Tempo-spatial patterns of land use changes and urban development in globalizing China: a study of Beijing. Sensors 7(11):2881–2906

    Article  Google Scholar 

  • Yue W, Fan P, Wei YD, Qi J (2012a) Economic development, urban expansion, and sustainable development in Shanghai. Stoch Environ Res Risk Assess 28(4):1–17

    Google Scholar 

  • Yue W, Liu Y, Fan P, Ye X, Wu C (2012b) Assessing spatial pattern of urban thermal environment in Shanghai, China. Stoch Environ Res Risk Assess 26(7):899–911

    Article  Google Scholar 

  • Zhang H, Zeng Y, Bian L (2010a) Simulating multi-objective spatial optimization allocation of land use based on the integration of multi-agent system and genetic algorithm. Int J Environ Res 4(4):765–776

    Google Scholar 

  • Zhang H, Zeng Y, Bian L, Yu X (2010b) Modelling urban expansion using a multi agent-based model in the city of Changsha. J Geogr Sci 20(4):540–556

    Article  Google Scholar 

  • Zhang X, Fang C, Wang Z, Ma H (2013) Urban construction land suitability evaluation based on improved multi-criteria evaluation based on GIS (MCE-GIS): case of New Hefei City. China. Chin Geogr Sci 23(6):740–753

    Article  Google Scholar 

  • Zhong T, Zhang X, Huang X (2009) Simulation of farmer decision on land use conversions using decision tree method in Jiangsu Province, China. Span J Agric Res 7(3):687–698

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (No. 41201386, 41171326, 41101546) and the Postdoctoral Science Foundation of China (No. 2012M521045). We sincerely thank two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jin, X., Wang, L. et al. Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China. Stoch Environ Res Risk Assess 29, 63–78 (2015). https://doi.org/10.1007/s00477-014-0942-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0942-z

Keywords

Navigation