Skip to main content
Log in

On the estimation of continuous 24-h precipitation maxima

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Extreme value analysis of precipitation is of great importance for several types of engineering studies and policy decisions. For return level estimation of extreme 24-h precipitation, practitioners often use daily measurements (usually 08:00–08:00 local time) since high-frequency measurements are scarce. Annual maxima of daily series are smaller or equal to continuous 24-h precipitation maxima such that the resulting return levels may be systematically underestimated. In this paper we use a rule, derived earlier, on the conversion of the generalized extreme value (GEV) distribution of daily to 24-h maxima. We develop an estimator for the conversion exponent by combining daily maxima and high-frequency sampled 24-h maxima in one joint log-likelihood. Once the conversion exponent has been estimated, GEV-parameters of 24-h maxima can be obtained at sites where only daily data is available. The new methodology has been extended to spatial regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ancona-Navarette MA, Tawn JA (2000) A comparison of methods for estimating the extremal index. Extremes 3:5–38

    Article  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes. Wiley, Sussex

    Book  Google Scholar 

  • Blanchet J, Lehning M (2010) Mapping snow depth return levels: smooth spatial modeling versus station interpolation. Hydrol Earth Syst Sci 14:2527–2544

    Article  Google Scholar 

  • Chandler RE, Bate S (2007) Inference for clustered data using the independence loglikelihood. Biometrika 94:167–183

    Article  Google Scholar 

  • Chernick MR (1981) A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. Ann Probab 9:145–149

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer, Berlin

    Book  Google Scholar 

  • Coles S, Tawn JA (1996) Modeling extremes of the areal rainfall process. J R Stat Soc B 58:329–347

    Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102:824–840

    Article  CAS  Google Scholar 

  • Cooley D, Cisewski J, Erhardt R, Jeon S, Mannshardt E, Omolo B, Sun Y (2012) A survey of spatial extremes: measuring spatial dependence and modeling spatial effects. REVSTAT 10:135–165

    Google Scholar 

  • Davison A (2003) Statistical models, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Davison A, Padoan S, Ribatet M (2012) Statistical modelling of spatial extremes. Stat Sci 27:161–186

    Article  Google Scholar 

  • Demarée GR (2003) Le pluviographe centenaire du plateau d’Uccle: son histoire, ses données et ses applications. La Houille Blanche 4:1–8

    Google Scholar 

  • Dwyer IJ, Reed DW (1995) Allowance for discretization in hydrological and environmental risk estimation. Report 123, Institute of Hydrology, Wallingford

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin

    Book  Google Scholar 

  • Gomes MI (1993) On the estimation of parameters of rare events in environmental time series. In: Barnett V, Turkman KF (eds.) Statistics for the environment 2: water related issues: pp 225–241

  • Hershfield DM, Wilson WT (1958) Generalizing of rainfall-intensity-frequency data. IUGG/IAHS 43:499–506

    Google Scholar 

  • Leadbetter MR (1983) Extremes and local dependence in stationary sequences. Z Wahrscheinlichkeit 65:291–306

    Article  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén T (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  Google Scholar 

  • Obeysekera J, Irizarry M, Park J, Barnes J, Dessalegne T (2011) Climate change and its implications for water resources management in south Florida. Stoch Environ Res Risk Assess 25:495–516

    Article  Google Scholar 

  • Piterbarg VI (2004) Discrete and continuous time extremes of Gaussian processes. Extremes 7:161–177

    Article  Google Scholar 

  • Pidwirny M (2008) Fundamentals of physical geography, 2nd Ed. PhysicalGeography.net

  • Ribatet M (2011) SpatialExtremes: an R package for modelling spatial extremes, http://cran.r-project.org/web/packages/SpatialExtremes/

  • Robinson ME, Tawn JA (2000) Extremal analysis of processes sampled at different frequencies. J R Stat Soc B 62:117–135

    Article  Google Scholar 

  • Siliverstovs B, Otsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2010) Climate change and modelling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess 24:311–326

    Article  Google Scholar 

  • Smith RL (1990) Regional estimation from spatially dependent data. Unpublished manuscript, University of Chapel Hill

  • Smith RL, Weissman I (1994) Estimating the extremal index. J R Stat Soc B 56:515–528

    Google Scholar 

  • Turkman KF (2011) Discrete and continuous time extremes of stationary processes. In: Handbook of statistics. Time series analysis: methods and applications 30:565–582

  • Van de Vyver H (2012) Spatial regression models for extreme precipitation in Belgium. Water Resour Res 48:W09549

    Google Scholar 

  • Van de Vyver H (2013) Practical return level mapping for extreme precipitation in Belgium. Publication scientific et technique 62, L’Institut Royal Météorologique de Belgique

  • van Montfort MAJ (1990) Sliding maxima. J Hydrol 118:77–85

    Article  Google Scholar 

  • Varin C, Vidoni P (2005) A note on composite likelihood inference and model selection. Biometrika 92:519–528

    Article  Google Scholar 

  • Weiss LL (1964) Ratio of true to fixed-interval maximum rainfall. J Hydraul Div ASCE 90:77–82

    Google Scholar 

  • Yoon P, Kim T-W, Yoo C (2013) Rainfall frequency analysis using a mixed GEV distribution: a case study for annual maximum rainfalls in South Korea. Stoch Environ Res Risk Assess 27:1143–1153

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported, in part, by the Belgian Science Policy Office (BELSPO) under Contract No. SD/RI/03A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Van de Vyver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Vyver, H. On the estimation of continuous 24-h precipitation maxima. Stoch Environ Res Risk Assess 29, 653–663 (2015). https://doi.org/10.1007/s00477-014-0912-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0912-5

Keywords

Navigation