Skip to main content
Log in

A statistical framework of data fusion for spatial prediction of categorical variables

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With rapid advances of geospatial technologies, the amount of spatial data has been increasing exponentially over the past few decades. Usually collected by diverse source providers, the available spatial data tend to be fragmented by a large variety of data heterogeneities, which highlights the need of sound methods capable of efficiently fusing the diverse and incompatible spatial information. Within the context of spatial prediction of categorical variables, this paper describes a statistical framework for integrating and drawing inferences from a collection of spatially correlated variables while accounting for data heterogeneities and complex spatial dependencies. In this framework, we discuss the spatial prediction of categorical variables in the paradigm of latent random fields, and represent each spatial variable via spatial covariance functions, which define two-point similarities or dependencies of spatially correlated variables. The representation of spatial covariance functions derived from different spatial variables is independent of heterogeneous characteristics and can be combined in a straightforward fashion. Therefore it provides a unified and flexible representation of heterogeneous spatial variables in spatial analysis while accounting for complex spatial dependencies. We show that in the spatial prediction of categorical variables, the sought-after class occurrence probability at a target location can be formulated as a multinomial logistic function of spatial covariances of spatial variables between the target and sampled locations. Group least absolute shrinkage and selection operator is adopted for parameter estimation, which prevents the model from over-fitting, and simultaneously selects an optimal subset of important information (variables). Synthetic and real case studies are provided to illustrate the introduced concepts, and showcase the advantages of the proposed statistical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkinson P, Lewis P (2000) Geostatistical classification for remote sensing: an introduction. Comput Geosci 26(4):361–371

    Article  Google Scholar 

  • Atkinson PM (2012) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf

  • Barzilai J, Borwein JM (1988) Two-point step size gradient methods. IMA J Numer Anal 8(1):141–148

    Article  Google Scholar 

  • Birgin E, Marttinez J, Raydan M (2000) Nonmonotone spectral projected gradient methods on convex sets. SISM SISM J Optim 10:1196–1211

    Article  Google Scholar 

  • Bogaert P (2002) Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 16(6):425–448

    Article  Google Scholar 

  • Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial prediction context: a general formulation. Stoch Environ Res Risk Assess 21:695–709

    Google Scholar 

  • Bogard V (1973) Soil survey of Pontotoc County, Oklahoma, U.S. Soil Conservation Service

  • Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    Google Scholar 

  • Burgess D (1977) Soil survey of Johnston County, Oklahoma, National Cooperative Soil Survey

  • Cao G, Kyriakidis P, Goodchild M (2011) A multinomial logistic mixed model for the prediction of categorical spatial data. Int J Geogr Inf Sci 25(12):2071–2086

    Article  Google Scholar 

  • Chiles J, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

  • Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–777

    Article  Google Scholar 

  • Christensen O (2004) Monte Carlo maximum likelihood in model-based geostatistics. J Comput Graph Stat 13(3):702–718

    Article  Google Scholar 

  • Diggle P, Tawn J, Moyeed R (1998) Model-based geostatistics. Appl Stat 47(3):299–350

    Google Scholar 

  • Fagin T, Hoagland B (2011) Patterns from the past: modeling Public Land Survey witness tree distributions with weights-of-evidence. Plant Ecol 212:207–217

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Goodchild M, Zhang J, Kyriakidis P (2009) Discriminant models of uncertainty in nominal fields. Trans GIS 13(1):7–23

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P (1998) Accounting for estimation optimality criteria in simulated annealing. Math Geol 30(5):511–534

    Article  Google Scholar 

  • Gotway CA, Stroup WW (1997) A generalized linear model approach to spatial data analysis and prediction. J Agric Biol Environ Stat 2(2):157

    Article  Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24(3):269–286

    Article  Google Scholar 

  • He H, Dey D, Fan X, Hooten M, Kabrick J, Wikle C, Fan Z (2007) Mapping pre-European settlement vegetation at fine resolutions using a hierarchical Bayesian model and GIS. Plant Ecol 11:85–94

    Article  Google Scholar 

  • He H, Mladenoff D, Sickley T, Guntenspergen G (2000) GIS interpolations of witness tree records (1839–1866) for Northern Wisconsin at multiple scales. J Biogeogr 27:1131–1042

    Article  Google Scholar 

  • Hengl T, Heuvelink G, Rossiter D (2007) About regression-kriging: from equations to case studies. Comput Geosci 33(10):1301–1315

    Article  Google Scholar 

  • Hengl T, Heuvelink G, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1):75–93

    Article  Google Scholar 

  • Hengl T, Toomanian N, Reuter H, Malakouti M (2007) Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140:417–427

    Article  Google Scholar 

  • Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468

    Article  Google Scholar 

  • Journel AG, Alabert F (1989) No-Gaussian data expansion in the Earth Sciences. Terra Nova 1(1):123–134

    Article  Google Scholar 

  • Kimeldorf G, Wahba G (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann Math Stat 41(2):495–502

    Article  Google Scholar 

  • Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS (2004) A statistical framework for genomic data fusion. Bioinformatics 20(16):2626–2635

    Article  CAS  Google Scholar 

  • Li D, Zhang J, Wu H (2012) Spatial data quality and beyond. Int J Geogr Inf Sci 26(12):2277–2290

    Article  Google Scholar 

  • Liang K, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13

    Article  Google Scholar 

  • Meier L, Geer SVD, Bühlmann P (2008) The group lasso for logistic regression. J R Stat Soc B 70:53–71

    Article  Google Scholar 

  • Miller HJ, Han J (2003) Geographic data mining and knowledge discovery. CRC Press, Boca Raton

  • Nocedal J (1980) Updating quasi-newton matrices with limited storage. Math Comput 35(151):773–782

    Article  Google Scholar 

  • Obozinski G, Taskar B, Jordan M (2007) Joint covariate selection for grouped classification, technical report, University of California, Berkeley

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd P, Pardoiguzquiza E (2005) Multiple indicator cokriging with application to optimal sampling for environmental monitoring. Comput Geosci 31(1):1–13

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71(2):319–392

    Article  Google Scholar 

  • Schmidt M (2010) Graphical model structure learning with l1-regularization. PhD thesis, University of British Columbia

  • Schmidt M, Berg EVD, Friedlander M, Murphy K (2009) Optimizing costly functions with simple constraints: a limited-memory projected quasi-newton algorithm. In: Proceedings of the 12th international conference on artificial intelligence and statistics (AISTATS), pp. 456–463

  • Schölkopf B, Herbrich R, Smola A (2001) A generalized representer theorem. In: Proceedings of the annual conference on computational learning theory, pp. 416–426

  • Schölkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

  • Schoölkopf B, Tsuda K, Vert J-P (2004) Kernel methods in computational biology. MIT Press, Cambridge

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288

    Google Scholar 

  • Tso B, Mather P (2009) Classification methods for remotely sensed data. CRC Press, Boca Raton

  • Wackernagel H (1998) Multivariate geostatistics—an Introduction with applications, 2nd edn. Springer, New York

  • Wahba G (1990) Spline models for observational data, vol. 59. Society for Industrial and Applied Mathematics, Philadelphia

  • West M (2003) Bayesian factor regression models in the large p, small n paradigm. Bayesian Stat 7(2003):723–732

    Google Scholar 

  • Wibrin M, Bogaert P, Fasbender D (2006) Combining categorical and continuous spatial information within the Bayesian Maximum Entropy paradigm. Stoch Environ Res Risk Assess 20:423–433

    Article  Google Scholar 

  • Williams C, Barber D (2002) Bayesian classification with Gaussian processes. Pattern Anal Mach Intell IEEE Trans 20(12):1342–1351

    Article  Google Scholar 

  • Yoo E-H, Hoagland BW, Cao G, Fagin T (2013) Spatial distribution of trees and landscapes of the past: a mixed spatially correlated multinomial logit model approach for the analysis of the public land survey data. Geogr Anal 45(4):419–440

    Google Scholar 

  • Yoo E-H, Trgovac A (2011) Scale effects in uncertainty modeling of presettlement vegetation distribution. Int J Geogr Inf Sci 25(3):405–421

    Article  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc B 68:49–67

    Article  Google Scholar 

  • Zhang H (2002) On estimation and prediction for spatial generalized linear mixed models. Biometrics 58(1):129–136

    Article  Google Scholar 

  • Zhang J, Goodchild M (2002) Uncertainty in geographic information. Taylor & Francis, London

    Book  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding provided by the National Science Foundation under grant number OCI-1047916 to support this research. We would like to thank Professors Bruce W. Hoagland and Todd D. Fagin from the University of Oklahoma for valuable discussions and the datasets they kindly provided. We would also thank the anonymous reviewers for the constructive comments and suggestions, and thank Professor Jeff Lee from Texas Tech University for his proofreading which has profoundly improved the composition of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, G., Yoo, Eh. & Wang, S. A statistical framework of data fusion for spatial prediction of categorical variables. Stoch Environ Res Risk Assess 28, 1785–1799 (2014). https://doi.org/10.1007/s00477-013-0842-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0842-7

Keywords

Navigation