Skip to main content

Advertisement

Log in

A test for directional-linear independence, with applications to wildfire orientation and size

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A nonparametric test for assessing the independence between a directional random variable (circular or spherical, as particular cases) and a linear one is proposed in this paper. The statistic is based on the squared distance between nonparametric kernel density estimates and its calibration is done by a permutation approach. The size and power characteristics of various variants of the test are investigated and compared with those for classical correlation-based tests of independence in an extensive simulation study. Finally, the best-performing variant of the new test is applied in the analysis of the relation between the orientation and size of Portuguese wildfires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad IA, Li Q (1997) Testing independence by nonparametric kernel method. Stat Probab Lett 34(2):201–210

    Article  Google Scholar 

  • Bai ZD, Rao CR, Zhao LC (1988) Kernel estimators of density function of directional data. J Multivar Anal 27(1):24–39

    Article  Google Scholar 

  • Barros AMG, Pereira JMC, Lund UJ (2012) Identifying geographical patterns of wildfire orientation: a watershed-based analysis. For. Ecol Manage 264:98–107

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  • Cao R (1993) Bootstrapping the mean integrated squared error. J Multivar Anal 45(1):137–160

    Article  Google Scholar 

  • Cao R, Cuevas A, Gonzalez Manteiga W (1994) A comparative study of several smoothing methods in density estimation. Comput Stat Data Anal 17(2):153–176

    Article  Google Scholar 

  • Chiu ST (1996) A comparative review of bandwidth selection for kernel density estimation. Stat Sin 6(1):129–145

    Google Scholar 

  • Costa L, Thonicke K, Poulter B, Badeck FW (2011) Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Reg Environ Change 11(3):543–551

    Article  Google Scholar 

  • ESRI (2009) ArcMap 9.21. Environmental Systems Research Institute, Redlands

  • Farr T, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Douglas A (2007) The shuttle radar topography mission. Rev Geophys 45(2). doi:10.1029/2005RG000183

  • Fernández-Durán JJ (2007) Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums. Biometrics 63(2):579–585

    Article  Google Scholar 

  • Finney M (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47(2):219–228

    Google Scholar 

  • Fisher NI, Lee AJ (1981) Nonparametric measures of angular-linear association. Biometrika 68(3):629–636

    Article  Google Scholar 

  • García-Portugués E (2013) Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electron J Stat 7:1655–1685

    Article  Google Scholar 

  • García-Portugués E, Crujeiras R, González-Manteiga W (2012) Exploring wind direction and SO2 concentration by circular-linear density estimation. Stoch Environ Res Risk Assess 27(5):1055–1067.

    Google Scholar 

  • García-Portugués E, Crujeiras R, González-Manteiga W (2013a) Kernel density estimation for directional-linear data. J Multivar Anal 121:152–175

    Article  Google Scholar 

  • García-Portugués E, Crujeiras R, González-Manteiga W (2013b) Central limit theorems for directional-linear data with applications (preprint)

  • Hall P, Watson GS, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74(4):751–762

    Article  Google Scholar 

  • Johnson RA, Wehrly T (1977) Measures and models for angular correlation and angular-linear correlation. J R Stat Soc B 39(2):222–229

    Google Scholar 

  • Johnson RA, Wehrly TE (1978) Some angular–linear distributions and related regression models. J Am Stat Assoc 73(363):602–606

    Article  Google Scholar 

  • Jones C, Marron J, Sheather S (1996) Progress in data-based bandwidth selection for kernel density estimation. Comput Stat 11:337–381

    Google Scholar 

  • Liddell IG, Ord JK (1978) Linear-circular correlation coefficients: some further results. Biometrika 65(2):448–450

    Article  Google Scholar 

  • Lloret F, Calvo E, Pons X, Diaz-Delgado R (2002) Wildfires and landscape patterns in the eastern Iberian peninsula. Landsc Ecol 17:745–759

    Article  Google Scholar 

  • Luo D (1998) Pattern recognition and image processing. Horwood, Chichester

  • Mardia K (1976) Linear-circular correlation coefficients and rhythmometry. Biometrika 63(2):403–405

    Article  Google Scholar 

  • Moreira F, Rego F, Ferreira P (2001) Temporal (1985–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape-wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92(10):2389–2402

    Article  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  Google Scholar 

  • Pereira J, Santos T (2003) Fire risk and burned area mapping in Portugal. Technical report, Direção–Geral das Florestas, Lisboa

  • Pereira M, Trigo R, da Camara C, Pereira J, Leite S (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agric For Meteorol 129(1-2):11–25

    Article  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Google Scholar 

  • Rosenblatt M (1975) A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann Stat 3:1–14

    Article  Google Scholar 

  • Rosenblatt M, Wahlen BE (1992) A nonparametric measure of independence under a hypothesis of independent components. Stat Probab Lett 15(3):245–252

    Article  Google Scholar 

  • Schmidt DA, Taylor AH, Skinner CN (2008) The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade Range, California. For Ecol Manag 255(8–9):3170–3184

    Article  Google Scholar 

  • Silva JS, Vaz P, Moreira F, Catry F, Rego FC (2011) Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc Urban Plan 101(4):349–358

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London

  • Strauss D, Bednar L, Mees R (1989) Do one percent of forest fires cause ninety-nine percent of the damage? For Sci 35(2):319–328

    Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing, Chapman & Hall, London

  • Watson GS (1983) Statistics on spheres. University of Arkansas lecture notes in the mathematical sciences, vol 6. Wiley, New York

Download references

Acknowledgements

The authors acknowledge the support of Project MTM2008-03010, from the Spanish Ministry of Science and Innovation, Project 10MDS207015PR from Dirección Xeral de I+D, Xunta de Galicia and IAP network StUDyS, from Belgian Science Policy. Work of E. García-Portugués has been supported by FPU grant AP2010-0957 from the Spanish Ministry of Education and work of A. M. G. Barros, by Ph.D. Grant SFRH/BD/40398/2007 from the Fundação para a Ciência e Tecnologia. J. M. C. Pereira participated in this research under the framework of research projects “Forest fire under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (FUME)”, EC FP7 Grant Agreement No. 243888 and “Fire-Land-Atmosphere Inter-Relationships: understanding processes to predict wildfire regimes in Portugal" (FLAIR), PTDC/AAC/AMB/104702/2008. Authors gratefully acknowledge an anonymous referee for the suggestion of employing permutations for the test calibration and the careful revision of the paper. Authors also acknowledge the suggestions raised by another referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenceslao González-Manteiga.

Appendix

Appendix

1.1 A Proof of Lemma 1

Proof The closed expression (just involving matrix computations) for T n is obtained by splitting the calculation into three addends:

$$ \begin{aligned} T_n=&\int\limits_{\varOmega_{q}\times{\mathbb{R}}}{\left(\hat f_{({\mathbf{X}},Z);h,g}({\mathbf{x}},z)-\hat f_{{\mathbf{X}};h}({\mathbf{x}})\hat f_{Z;g}(z)\right)^2}{\omega_{q}{(d\mathbf{x})}}{dz} \\ = \, &\int\limits_{\varOmega_{q}\times{\mathbb{R}}}\left(\frac{c_{h,q}(L)}{ng}\sum_{i=1}^n L\left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right)K \left(\frac{z-Z_i}{g}\right)\right.\\ &\bigg.-\hat f_{{\mathbf{X}};h}({\mathbf{x}})\hat f_{Z;g}(z)\bigg)^2{\omega_{q}{(d\mathbf{x})}}{dz} \\ =&\sum_{i=1}^n\sum_{j=1}^n \int\limits_{\varOmega_{q}\times{\mathbb{R}}}\frac{c_{h,q}(L)^2}{n^2g^2} L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right) K \left(\frac{z-Z_i}{g}\right) \\ &\cdot L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_j}{h^2}\right) K \left(\frac{z-Z_j}{g}\right){\omega_{q}{(d\mathbf{x})}}{dz} \\ &-2\sum_{i=1}^n \int\limits_{\varOmega_{q}\times{\mathbb{R}}}\frac{c_{h,q}(L)}{ng} L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right) K \left(\frac{z-Z_i}{g}\right)\\ &\cdot\hat f_{{\mathbf{X}};h}({\mathbf{x}})\hat f_{Z;g}(z){\omega_{q}{(d\mathbf{x})}}{dz} \\ &+\int\limits_{\varOmega_{q}\times{\mathbb{R}}}{\hat f_{{\mathbf{X}};h}({\mathbf{x}})^2\hat f_{Z;g}(z)^2}{\omega_{q}{(d\mathbf{x})}}{dz} \\ = \, &(6)-(7)+(8). \end{aligned} $$

The first addend is:

$$ \begin{aligned} (6)= \, &\frac{c_{h,q}(L)^2}{n^2g^2}\sum_{i=1}^n\sum_{j=1}^n\int\limits_{\varOmega_{q}\times{\mathbb{R}}} L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right) K \left(\frac{z-Z_i}{g}\right) \\ &\cdot L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_j}{h^2}\right) K \left(\frac{z-Z_j}{g}\right){\omega_{q}{(d\mathbf{x})}}{dz} \\ =&\frac{c_{h,q}(L)^2}{n^2g^2}\sum_{i=1}^n\sum_{j=1}^n\int\limits_{\varOmega_{q}} {e^{-2/h^2}e^{{\mathbf{x}}'({\mathbf{X}}_i+{\mathbf{X}}_j)/h^2}}{\omega_{q}{(d\mathbf{x})}} \\ &\cdot \int\limits_{{\mathbb{R}}}{K \left(\frac{z-Z_i}{g}\right) K \left(\frac{z-Z_j}{g}\right)}{dz} \\ =&\frac{c_{h,q}(L)^2}{n^2}e^{-2/h^2}\sum_{i=1}^n\sum_{j=1}^n\frac{\phi_{\sqrt{2}g}(Z_i-Z_j)} {C_q \left(\|{\mathbf{X}}_i+{\mathbf{X}}_j\|/h^2\right)} \\ =&\frac{C_q \left(1/h^2\right)^2}{n^2}\sum_{i=1}^n\sum_{j=1}^n \frac{\phi_{\sqrt{2}g}(Z_i-Z_j)}{C_q \left(\|{\mathbf{X}}_i+{\mathbf{X}}_j\|/h^2\right)}. \end{aligned} $$

For the second addend,

$$ \begin{aligned} (7)= \, &2\sum_{i=1}^n \int\limits_{\varOmega_{q}\times{\mathbb{R}}}\frac{c_{h,q}(L)}{ng} L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right)K \left(\frac{z-Z_i}{g}\right) \\ &\cdot\hat f_{{\mathbf{X}};h}({\mathbf{x}})\hat f_{Z;g}(z){\omega_{q}{(d\mathbf{x})}}{dz} \\ = \, &2\frac{c_{h,q}(L)}{ng}\sum_{i=1}^n \int\limits_{\varOmega_{q}}{L\left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right)\hat f_{{\mathbf{X}};h}({\mathbf{x}})}{\omega_{q}{(d\mathbf{x})}} \\ &\cdot \int\limits_{{\mathbb{R}}}{K \left(\frac{z-Z_i}{g}\right)\hat f_{Z;g}(z)}{dz} \\ = \, &2\frac{c_{h,q}(L)}{ng}\sum_{i=1}^n \left\{\left[ \int\limits_{\varOmega_{q}}L\left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right)\right.\right. \\ &\left.\cdot\frac{c_{h,q}(L)}{n}\sum_{j=1}^n L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_j}{h^2}\right){\omega_{q}{(d\mathbf{x})}} \right] \\ & \left.\cdot \left[\int\limits_{{\mathbb{R}}}{ K \left(\frac{z-Z_i}{g}\right)\frac{1}{ng}\sum_{k=1}^n K\left(\frac{z-Z_k}{g}\right)}{dz}\right]\right\} \\ = &\frac{2}{n^3}\sum_{i=1}^n\left\{\Bigg[\int\limits_{\varOmega_{q}}{c_{h,q}(L)^2e^{-2/h^2} e^{{\mathbf{x}}'\left({\mathbf{X}}_i+{\mathbf{X}}_j\right)/h^2}}{\omega_{q}{(d\mathbf{x})}}\Bigg]\right. \\ &\left.\cdot \left(\sum_{k=1}^n\phi_{\sqrt{2}g}(Z_i-Z_k)\right)\right\} \\ = &\frac{2}{n^3}\sum_{i=1}^n\left\{\Bigg[\sum_{j=1}^n \frac{C_q \left(1/h^2\right)^2}{C_q \left(\|{\mathbf{X}}_i+{\mathbf{X}}_j\|/h^2\right)}\Bigg]\right. \\ &\left.\cdot\left(\sum_{k=1}^n\phi_{\sqrt{2}g}(Z_i-Z_k)\right)\right\}. \\ \end{aligned} $$

Finally, the third addend is obtained as

$$ \begin{aligned} (8)=& \int\limits_{\varOmega_{q}\times{\mathbb{R}}}{\hat f_{{\mathbf{X}};h}({\mathbf{x}})^2\hat f_{Z;g}(z)^2}{\omega_{q}{(d\mathbf{x})}}{dz} \\ =& \int\limits_{\varOmega_{q}}{\hat f_{{\mathbf{X}};h}({\mathbf{x}})^2}{{\mathbf{x}}} \int\limits_{{\mathbb{R}}}{\hat f_{Z;g}(z)^2}{dz} \\ =&\left[\sum_{i=1}^n\sum_{j=1}^n\frac{c_{h,q}(L)^2}{n^2} \int\limits_{\varOmega_{q}}L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_i}{h^2}\right)\right. \\ &\left.\cdot L \left(\frac{1-{\mathbf{x}}'{\mathbf{X}}_j}{h^2}\right){\omega_{q}{(d\mathbf{x})}}\right] \\ &\cdot\Bigg[\sum_{i=1}^n\sum_{j=1}^n\frac{1}{n^2g^2} \int\limits_{{\mathbb{R}}}{ K\left(\frac{z-Z_i}{g}\right)K \left(\frac{z-Z_j}{g}\right)}{dz}\Bigg] \\ =&\Bigg[\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n\frac{C_q \left(1/h^2\right)^2}{C_q \left(\|{\mathbf{X}}_i+{\mathbf{X}}_j\|/h^2\right)}\Bigg] \\ &\cdot \Bigg[\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n\phi_{\sqrt{2}g}(Z_i-Z_j)\Bigg]. \\ \end{aligned} $$

From the previous results and after applying some matrix algebra, it turns out that

$$ \begin{aligned} T_n \, = \, &{\mathbf{1}}_n\bigg(\frac{1}{n^2}{\boldsymbol{\Uppsi}}(h)\circ{\boldsymbol{\Omega}}(g)-\frac{2}{n^3}{\boldsymbol{\Uppsi}}(h){\boldsymbol{\Omega}}(g) \\ &+\frac{1}{n^4}{\boldsymbol{\Uppsi}}(h){\mathbf{1}}_n{\mathbf{1}}_n'{\boldsymbol{\Omega}}(g)\bigg){\mathbf{1}}_n', \\ \end{aligned} $$

where

$$ \begin{aligned} {\boldsymbol{\Uppsi}}(h)=&\left(\frac{C_q\left(1/h^2\right)^2}{C_q \left(\|{\mathbf{X}}_i+{\mathbf{X}}_j\|/h^2\right)}\right)_{ij}, \\ {\boldsymbol{\Omega}}(g)=& \left(\phi_{\sqrt{2}g} \left(Z_i-Z_j\right)\right)_{ij}. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Portugués, E., Barros, A.M.G., Crujeiras, R.M. et al. A test for directional-linear independence, with applications to wildfire orientation and size. Stoch Environ Res Risk Assess 28, 1261–1275 (2014). https://doi.org/10.1007/s00477-013-0819-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0819-6

Keywords

Profiles

  1. Eduardo García-Portugués