Adler RJ (2009) The geometry of random fields. Siam, Philadelphia
Banerjee S, Gelfand A (2003) On smoothness properties of spatial processes. J Multivar Anal 84(1):85–100
Google Scholar
Cressie N, Huang H (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340
Google Scholar
Cressie N, Wikle C (2011) Statistics for spatio-temporal data, vol 465. Wiley, New York
De Iaco S, Myers D, Posa D (2002) Nonseparable space–time covariance models: some parametric families. Math Geol 34(1):23–42
Google Scholar
Diggle P, Ribeiro P (2007) Model-based geostatistics, vol 13. Springer, New York
Eriksson M, Siska P (2000) Understanding anisotropy computations. Math Geol 32(6):683–700
Google Scholar
Fernández-Avilés G, Montero JM, Porcu E, Schlather M (2012) Space–time processes and geostatistics. Advances and challenges in space–time modelling of natural events. Springer, New York, pp 1–23
Gerharz LE, Pebesma E (2013) Using geostatistical simulation to disaggregate air quality model results for individual exposure estimation on gps tracks. Stoch Environ Res Risk Assess 27:223–234
Google Scholar
Gneiting T (2002) Nonseparable, stationary covariance functions for space–time data. J Am Stat Assoc 97(458):590–600
Google Scholar
Hristopulos DT, Elogne SN (2007) Analytic properties and covariance functions for a new class of generalized gibbs random fields. IEEE Trans Inf Theory 53(12):4667–4679
Article
Google Scholar
Hristopulos DT, Žukovič M (2011) Relationships between correlation lengths and integral scales for covariance models with more than two parameters. Stoch Environ Res Risk Assess 25(1):11–19
Article
Google Scholar
De Iaco S, Myers D, Posa D (2001) Space–time analysis using a general product–sum model. Stat Probab Lett 52(1)21–28
Google Scholar
Kent J, Mohammadzadeh M, Mosammam A (2011) The dimple in gneiting’s spatial-temporal covariance model. Biometrika 98(2):489–494
Google Scholar
Ma C (2008) Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess 22:39–47
Article
Google Scholar
Mateu J, Porcu E, Gregori P (2008) Recent advances to model anisotropic space–time data. Stat Methods Appl 17(2):209–223
Google Scholar
Mateu J, Fernández-Avilés G, Montero J (2011) On a class of non-stationary, compactly supported spatial covariance functions. Stoch Environ Res Risk Assess 27(2):297–309
Google Scholar
Mehlum E, Tarrou C (1998) Invariant smoothness measures for surfaces. Adv Comput Math 8(1):49–63
Google Scholar
Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21(2):113–122
Google Scholar
Porcu E, Mateu J, Zini A, Pini R (2007) Modelling spatio-temporal data: a new variogram and covariance structure proposal. Stat Prob Lett 77(1):83–89
Google Scholar
Porcu E, Mateu J, Saura F (2008) New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch Environ Res Risk Assess 22:65–79
Article
Google Scholar
Porcu E, Mateu J, Christakos G (2009) Quasi-arithmetic means of covariance functions with potential applications to space–time data. J Multivar Anal 100(8):1830–1844
Article
Google Scholar
Stein M (1999) Interpolation of spatial data: some theory for kriging. Springer, New York
Stein M (2005) Space–time covariance functions. J Am Stat Assoc 100(469):310–321
Google Scholar
Stoker J (1969) Differential geometry. Wiley Interscience, New York
Xue Y, Xiao Y (2011) Fractal and smoothness properties of space–time Gaussian models. Front Math China 6(6):1217–1248
Google Scholar