Skip to main content
Log in

Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews RK, Blakeley RL, Zerner B (1984) Urea and urease. Adv Inorg Biochem 6:245–283

    CAS  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Bennion BJ, Daggett V (2003) The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA 100(9):5142–5147

    Article  CAS  Google Scholar 

  • Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241

    Article  Google Scholar 

  • Bocquet M, Pires CA, Wu L (2010) Beyond Gaussian statistical modeling in geophysical data assimilation. Mon Weather Rev 138:2997–3023

    Article  Google Scholar 

  • Briant AK, Robert LR, Richard BW, Philip LV (2010) Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA. Chem Geol 269:124–136

    Article  Google Scholar 

  • Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126:1719–1724

    Google Scholar 

  • Burne RA, Chen YY (2000) Bacterial ureases in infectious diseases. Microbes Infect 2(5):533–542

    Article  CAS  Google Scholar 

  • Chang HB, Chen Y, Zhang DX (2010) Data assimilation of coupled fluid flow and geomechanics via ensemble Kalman filter. SPE 118963

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman Filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev 190:331–335

    Google Scholar 

  • Delay R (1991) Atmospheric data analysis. Cambridge University Press, New York, p 457

    Google Scholar 

  • DOE (2006) Operable Unit 3-14 Tank Farm Soil and Groundwater Remedial Investigation/Baseline Risk Assessment. U. S. Department of Energy, Idaho Falls, ID

  • Eknes M, Evensen G (2002) An ensemble Kalman filter with a 1-D ecosystem model. J Mar Syst 36:75–100

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99 (C5):10.143–10.162

    Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 253:343–367

    Article  Google Scholar 

  • Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:539–560

    Article  Google Scholar 

  • Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York

    Google Scholar 

  • Evensen G (2009) The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst Mag 29(3):83–104

    Article  Google Scholar 

  • Fang YL, Yeh GT, Burgos WD (2003) A general paradigm to model reaction-based biogeochemical processes in batch systems. Water Resour Res 39(4):25

    Article  Google Scholar 

  • Fang F, Piggott MD, Pain CC, Gorman GJ, Goddard AJH (2006) An adaptive mesh adjoint data assimilation method. Ocean Model 15:39–55

    Article  Google Scholar 

  • Fidaleo M, Lavecchia R (2003) Kinetic study of enzymatic urea hydrolysis in the pH range 4–9. Chem Biochem Eng Q 17(4):311–318

    CAS  Google Scholar 

  • Franssen HJH, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modeling of dynamic groundwater flow systems. J Hydrol. doi:10.1016/j.jhydrol.2008.11.033

    Google Scholar 

  • Gu Y, Oliver DS (2005) History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE Journal 10(2):217–224

    Article  Google Scholar 

  • Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128(1):79–87

    Article  CAS  Google Scholar 

  • Guo LJ (2009) Reactive solute transport in heterogeneous porous media—numerical simulation of urea hydrolysis and calcite precipitation using STOMP. Master Thesis

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790

    Article  Google Scholar 

  • Harlem J, Majda AJ (2010) Catastrophic filter and divergence in filtering nonlinear dissipative system. Commun Math Sci 8(1):27–43

    Article  Google Scholar 

  • Hemant AP, Oliver DS (2009) Data assimilation using the constrained ensemble Kalman filter (SPE 125101). In: SPE annual technical conference. New Orleans, Louisiana, 4–7 Oct 2009

  • Hotta S, Funamizu N (2008) Inhibition factor of ammonification in stored urine with fecal contamination. Water Sci Technol 58(6):1187–1192

    Article  CAS  Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev. 129:123–137

    Article  Google Scholar 

  • Huang TC, Chen DH (1992) Variations of ammonium ion concentration and solution pH during the hydrolysis of urea by urease. Chem Technol Biotechnol 55(1):45–51

    Article  CAS  Google Scholar 

  • Huang C, Li X, Lu L, Gu J (2008a) Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter. Remote Sens Environ 112(3):888–900

    Article  Google Scholar 

  • Huang C, Li X, Lu L (2008b) Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sens Environ 112(4):1320–1336

    Article  Google Scholar 

  • Huang C, Bill XH, Li X, Ye M (2009) Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stoch Environ Res Risk Assess 23(8):1155–1167. doi:10.1007/s00477-008-0289-4

    Article  Google Scholar 

  • Jabri E, Carr MB, Hausinger PP, Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 19(268):988–1004

    Google Scholar 

  • Karplus PA, Pearson MA, Hausinger RP (1997) 70 years of crystalline urease: what have we learned? Acc Chem Res 30(8):330–337

    Article  CAS  Google Scholar 

  • Komma J, Bloschl G, Reszler C (2008) Soil moisture updating by ensemble Kalman filtering in real-time flood forecasting. J Hydrol 357:228–242

    Article  Google Scholar 

  • Lenartz F, Raick C, Soetaert K, Gregoire M (2007) Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea. J Mar Syst. doi:10.1016/j.jmarsys.2006.12.001

    Google Scholar 

  • Moradkhani HS, Sorooshian H, Gupta V, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  • Naevdal G, Johnsen LM, Aanonsen SI, Vefring EH (2003) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE 84372

  • Nerger L, Danilov S, Kivman G, Hiller W, Schroter J (2007) Data assimilation with the ensemble Kalman Filter and the SEIK filter applied to a finite element model of the North Atlantic. J Mar Syst 65:288–298

    Article  Google Scholar 

  • Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA (2004) A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56:415–428

    Article  Google Scholar 

  • Pan M, Wood EF (2006) Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J Hydrometeorol 7(3):534–547

    Article  Google Scholar 

  • Patra DD, Kiran U, Chand S, Anwar M (2009) Use of urea coated with natural products to inhibit urea hydrolysis and nitrification in soil. Biol Fertil Soils 45(6):617–621

    Article  Google Scholar 

  • Prakash J, Patwardhan SC, Shah SL (2008) Constrained state estimation using the ensemble Kalman filter. In: American Control Conference, Westin Seattle Hotel, Seattle, Washington, 11–13 June 2008

  • Qin Y, Cabral JMS (2002) Review properties and applications of urease. Biocat Biotrans 20:1–14

    Article  CAS  Google Scholar 

  • Reichle RH, Mclaughlin DB, Entekhabi D (2002a) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130:103–114

    Article  Google Scholar 

  • Reichle RH, Walker JP, Koster RD (2002b) Extended versus ensemble filtering for land data assimilation. J Hydrometeorol 3:728–740

    Article  Google Scholar 

  • Sigurd IA, Nævdal G, Oliver DS, Reynolds AC, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J. doi:10.2118/117274-PA

    Google Scholar 

  • Steefel CI, MacQuarrie KTB (1996) Approaches to modeling of reactive transport in porous media. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media. Rev Mineral 34:83–125

  • Thacker WC (2007) Data assimilation with inequality constraints. Ocean Model 16(3–4):264–276

    Article  Google Scholar 

  • Thomsen PG, Zlatev Z (2008) Development of a data assimilation algorithm. Comput Math Appl 55:2381–2393

    Article  Google Scholar 

  • Tong JX, Hu BX, Yang JZ (2010) Using data assimilation method to calibrate a heterogeneous conductivity filed conditioning on a transient flow test data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-010-0392-1

    Google Scholar 

  • Tong JX, Hu BX, Yang JZ (2012a) Data assimilation methods for estimating a heterogeneous conductivity field by assimilating transient solute transport data via ensemble Kalman filter. Hydrol Process. doi:10.1002/hyp.9523

    Google Scholar 

  • Tong JX, Hu BX, Yang JZ (2012b) Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field. Stoch Environ Res Risk Assess. doi:10.1007/s00477-011-0534-0

    Google Scholar 

  • Varner JE (1976) Urease. In: Boyer PB, Lardy H, Myrback K (eds) The Enzymes. Acedemic Press, New York, pp 247–256

    Google Scholar 

  • Wang DB, Chen YG, Cai XM (2009) State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resour Res 45:W11416. doi:10.1029/2008WR007401

    Google Scholar 

  • Weerts AH, El Serafy GYH (2006) Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour Res 45:W09403. doi:10.1029/2005WR004093

    Google Scholar 

  • Wen X-H, Chen W-H (2005) Real-time reservoir model updating using ensemble Kalman filter. SPE J 11(4):431–442

    Google Scholar 

  • White MD, McGrail BP (2005) Stomp (subsurface transport over multiple phases) version 1.0 Addendum: Eckechem equilibrium-conservation-kinetic equation chemistry and reactive transport report PNNL-15482, Pacific Northwest National Laboratory, Richland, Washington

  • White MD, Oostrom M (2000) Stomp (subsurface transport over multiple phases version 2.0: theory guide. Report PNNL-12030, Pacific Northwest National Laboratory, Richland, Washington

  • White MD, Oostrom M (2006) Stomp subsurface transport over multiple phases: user’s guide. Report PNNL-15782 (UC-2010), Pacific Northwest National Laboratory, Richland, Washington

  • Xu T, Gerard F, Pruess K, Brimhall G (1997) Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media. Report LBNL-40504, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

  • Yeh GT, Burgos WD, Zachara JM (2001) Modeling and measuring biogeochemical reactions: system consistency, data needs, and rate formulations. Adv Environ Res 5(3):219–237

    Article  CAS  Google Scholar 

  • Yeh GT, Li Y, Jardine PM, Burgos WD, Fang Y, Li MH, Siegel MD (2004) Hydrogeochem 4.0: a coupled model of fluid flow, thermal transport, and hydrogeochemica transport through saturated-unsaturated media: version 4.0. Report ORNL/TM-2004/103, Oak Ridge National Laboratory, Oak Ridge, TN

Download references

Acknowledgments

This work is partly supported by the National Nature Science Foundation of China (Grant No. 51209187), the Fundamental Research Funds for the Central Universities (Grant No. 2652011286) and the National Nature Science Foundation of China Major Research Project (Grant No. 91125024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill X. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, J., Hu, B.X., Huang, H. et al. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling. Stoch Environ Res Risk Assess 28, 729–741 (2014). https://doi.org/10.1007/s00477-013-0786-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0786-y

Keywords

Navigation