Skip to main content

Advertisement

Log in

A geostatistical approach for assessing population exposure to NO2 in a complex urban area (Beirut, Lebanon)

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Few studies in the Middle East region estimated the spatial distribution of air pollutants for exposure studies. This paper presents a geostatistical approach to assess background NO2 spatial distribution and the associated exposed population in a Mediterranean city with a complex topography, Beirut. Such modeling gave an accurate mapping of the 2010 yearly background average value of NO2: it varies between 35 and 67 μg m−3 with a mean of 53 μg m−3. The mean SD of the estimated error was about 3 μg m−3. The results showed that the spatial distribution of NO2 follows a nested structuring, with a major structure related to topoclimatic characteristics (interaction topography/atmospheric flow at large scale) and a minor one linked to micro-environment and micro-climatic characteristics (interactions urban morphology/atmospheric flows at fine scale). The probability for the city’s inhabitants to be exposed to NO2 levels exceeding 40 μg m−3 threshold limit set by the World Health Organization (WHO) showed that Beirut city has a real sanitary risk to the NO2 pollution. 93 % of the population (around 358,459 people) is 100 % sure to be exposed to a yearly average exceeding 40 μg m−3. This knowledge will be certainly useful for developing a tool for decision support in order to implement policies of reducing air pollution in Beirut, which is, given the results, very urgent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afif C, Chélala C, Borbon A, Abboud M, Adjizian-Gérard J, Farah W, Jambert C, Zaarour R, Badaro SN, Perros PE, Rizk T (2008) SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Qual Atmos Health Air 1(3):167–178

    Article  CAS  Google Scholar 

  • Afif C, Dutot A, Jambert C, Abboud M, Adjizian-Gérard J, Farah W, Perros PE, Rizk T (2009) Statistical approach for the characterization of NO2 concentrations in Beirut. Air Qual Atmos Health 2(2):57–67

    Google Scholar 

  • AFSSE (2004) Impact sanitaire de la pollution atmosphérique urbaine. Rapport 1

  • Alexis N, Barnes C, Bernstein L, Bernstein J, Nel A, Peden D, David P, Diaz-Sanchez D, Tarlo S, William B (2004) Health effects of air pollution Environmental and occupational respiratory disorders Rostrum. J Allergy Clin Immunol 114(5)

  • Arnaud M, Emery X (2000) Estimation et interpolation spatiale Méthodes déterministes et géostatistiques. Hermes Science, Paris

    Google Scholar 

  • Astitha M, Kallos G, Katsfados P (2008) Air pollution modelling in the Mediterranean region: analysis and forecasting of episodes. Atmos Res 89(2008):358–364

    Article  CAS  Google Scholar 

  • Borrego C, Tchepel O, Costa AM, Martins H, Ferreira J, Miranda AL (2006) Traffic-related particulate air pollution exposure in urban areas. Atmos Environ 40:7205–7214

    Article  CAS  Google Scholar 

  • Bogaert P, Christakos G, Yu H-L (2009) Spatiotemporal modeling of ozone distribution in the state of California. Atmosph Environ 43(15):2471–2480

    Article  CAS  Google Scholar 

  • Bossioli E, Tombrou M, Dandou A, Athanasopoulou E, Varotsos KV (2009) The role of planetary boundary-layer parameterizations in the air quality of an urban area with complex topography. Boundary-Layer Meteorol 131:53–72

    Article  Google Scholar 

  • Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, Van Reeuwijk H, Smallbone K, Van Der Veen A (1997) Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 11(7):699–718

    Article  Google Scholar 

  • Buchholtz S, Junk J, Krein A, Heinemann G, Hoffmann L (2010) Air pollution characteristics associated with mesoscale atmospheric patterns in northwest continental Europe. Atmos Environ 44(39):5183–5190

    Article  Google Scholar 

  • Cardenas G, Malherbe L (2003) Evaluation des incertitudes associées aux méthodes géostatistiques. Rapport final, Laboratoire Central de Surveillance de la Qualité de l’Air

  • CAS (1996) La ville de Beyrouth début 1996 (Résultats du recensement des immeubles et des établissements), Etudes statistiques n 3. Beyrouth, Septembre 1996

  • CAS 2007 Housing Characteristics in 2007 (in Arabic)

  • Chaloulakou A, Mavroidis I, Gavriil I (2008) Compliance with the annual NO2 air quality standard in Athens, Required NOx levels and expected health implications. Atmos Environ 42:454–465

    Article  CAS  Google Scholar 

  • Chauhan AJ, Inskip HM, Linaker CH, Smith S, Schreiber J, Johnston S, Holgate ST (2003) Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet 361:1939–1944

    Article  CAS  Google Scholar 

  • Chelala C (2008) Transports routiers et pollution de l’air en NO2 dans Beyrouth (Liban), application du modèle STREET. Université Saint-Joseph, Thèse de Doctorat

  • Chelala C, Adjizian-Gerard J, Abboud M, Farah W, Rizk T (2006) Transport routier et pollution de l’air dans Beyrouth Municipe (Liban). Actes du colloque de la 2ème conférence ENVIRONNEMENT ET TRANSPORTS incluant le 15ème colloque Transports et pollution de l’air, 12–14 juin, Reims (France)

  • Chen ZH, Cheng SY, Li JB, Guo XR, Wang WH, Chen DS (2008) Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China. Atmos Environ 42:6078–6087

    Article  CAS  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford Univ. Press, New York (New edition. (2012) Dover Publ. Inc., Mineola)

  • Civerolo K, Hogrefe C, Lynn B, Rosenthal J, Ku JY, Solecki W, Cox J, Small C, Rosenzweig C, Goldberg R, Knowlton K, Kinney P (2007) Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region. Atmos Environ 41:1803–1818

    Article  CAS  Google Scholar 

  • De Fouquet C, Deraisme J, Bobbia M (2007) Comment évaluer les risques de dépassements de seuil : les modèles géostatistiques et leurs applications. Pollut atmosphérique, Environnement, Risques & Santé 6(3):207–218

    Google Scholar 

  • Delestraz G, Dabos P (2001) Modélisation statistique de la pollution azotée à proximité d’un axe routier et évaluation des incidences sur l’environnement. Actes du colloque Risques, Besançon (France)

  • Deraisme J, Bobbia M (2003) L’apport de la géostatistique à l’étude des risques liés à la pollution atmosphérique. Environnement, Risques & Santé 2(3):168–175

    Google Scholar 

  • Eilstein D (2010) Exposition prolongée à la pollution atmosphérique et mortalité par pathologies respiratoires. Revue française d’allergologie 50:51–61

    Article  Google Scholar 

  • Elminir HK (2002) Dependance of air pollutants on meteorology. Sci Total Environ 350(2005):225–237

    Google Scholar 

  • Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42(33):7561–7578

    Article  CAS  Google Scholar 

  • Huang G, Zhou X, Deng G, Qiaio H, Civerolo K (2002) Measurements of atmospheric nitrous acid and nitric acid. Atmos Environ 36:2225–2235

    Article  CAS  Google Scholar 

  • Jeannée N, Nedellec V, Bouallala S, Deraisme J, Desqueyroux H (2004) Geostatistical assesment of long term human exposure to air pollution. In: Jeannée N, Nedellec V, Bouallala S, Deraisme J, Desqueyroux H (eds) Geostatistics for environmental applications. Springer, Berlin

    Google Scholar 

  • Jeannée N, Mosqueron L, Nedellec V, Elichegaray C, Bouallala S, Desqueyroux H, Guillaume B, Liousse C, Lagache R (2006) Évaluation de l’exposition en zones urbaines à la pollution atmosphérique: méthodes existantes et application aux PM10 en France métropolitaine. Pollution Atmosphérique, 190(Avril-Juin 2006):197–209

  • Jensen SS (1996) Mapping human exposure to traffic air pollution using GIS. J Hazard Mater 61:385–392

    Article  Google Scholar 

  • Jerrett M, Newbold KB, Burnett RT, Thurston G, Lall R, Pope CA III, Ma R, De Luca P, Thun M, Calle J, Krewski D (2007) Geographies of uncertainty in the health benefits of air quality Improvements. Stoch Environ Res Risk Assess 21:511–522

    Article  Google Scholar 

  • Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C (2005) A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 15:185–204

    Article  CAS  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New York

    Google Scholar 

  • Kahraman C (2009) Risk analysis and crisis response. Stoch Environ Res Risk Assess 23:413–414

    Article  Google Scholar 

  • Makri A, Stilianakis N (2008) Vulnerability to air pollution health effects. Int J Hyg Environ Health 211:326–336

    Article  Google Scholar 

  • Massoud R, Shihadeh A, Roumié M, Youness M, Gerard J, Saliba N, Zaarour R, Abboud M, Farah W, Aoun Saliba N (2011) Intraurban variability of PM10 and PM2.5 in an eastern Mediterranean city. Atmos Res 101:893–901

    Article  CAS  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation. Une application de la théorie des fonctions aléatoires aux sciences de la nature, Masson

    Google Scholar 

  • Mayer H (1999) Air pollution in cities. Atmos Environ 33:4029–4037

    Article  CAS  Google Scholar 

  • Mölter A, Lindley S, de Vocht F, Simpson A, Agius R (2010a) Modelling air pollution for epidemiologic research—Part I: a novel approach combining land use regression and air dispersion. Sci Total Environ 408:5862–5869

    Article  Google Scholar 

  • Mölter A, Lindley S, de Vocht F, Simpson A, Agius R (2010b) Modelling air pollution for epidemiologic research—Part II: predicting temporal variation through land use regression. Sci Total Environ 409:211–217

    Article  Google Scholar 

  • Mutshinda CM, Antai I, O’Hara RB (2008) A probabilistic approach to exposure risk assessment. Stoch Environ Res Risk Assess 22:441–449

    Article  Google Scholar 

  • Neidell JM (2004) Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J Health Econ 23:1209–1236

    Article  Google Scholar 

  • Pandey JS, Kumar R, Devotta S (2005) Health risks of NO2, SPM and SO2 in Delhi (India). Atmos Environ 39:6868–6874

    Article  CAS  Google Scholar 

  • Pascal L (2009) Effets à court terme de la pollution sur la mortalité. Rev Mal Resp 26:2077–2219

    Google Scholar 

  • Saitanis C, Riga-Karandinos AN (2005) Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere 59:1125–1136

    Article  Google Scholar 

  • Saliba NA, Massoud R (2009) A comparative review of PM levels, sources, and their likely fates in the Eastern Mediterranean Region, in: urban airborne particulate matter: origins, chemistry, fate and heath. Springer, Berlin

    Google Scholar 

  • Saliba NA, Moussa S, Salame H, El-Fadel M (2006) Variation of selected air quality indicators over the city of Beirut, Lebanon: Assessment of emission sources. Atmos Environ 40:3263–3268

    Article  CAS  Google Scholar 

  • Saliba NA, Kouyoumdjian H, Roumié M (2007) Effect of local and long-range transport emissions on the elemental composition of PM10-2.5 and PM2.5 in Beirut. Atmos Environ 41:6497–6509

    Article  CAS  Google Scholar 

  • Saliba NA, Atallah M, Al-Kadamany G (2009) Levels and indoor-outdoor relationships of PM10 and soluble inorganic ions in Beirut, Lebanon. Atmos Res 92:131–137

    Article  CAS  Google Scholar 

  • Saliba NA, El Jam F, El Tayyar G, Obeid W, Roumie M (2010) Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmos Res 97:106–114

    Article  CAS  Google Scholar 

  • Sengupta S, Patil RS, Venkatachalam P (1996) Assesment of population exposure and risk zones due to air pollution using the Geographical Information System. Comput Environ Urban Syst 20(3):191–199

    Article  Google Scholar 

  • Wallace J, Corr D, Kanaroglou P (2010) Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Sci Total Environ 408:5086–5096

    Article  CAS  Google Scholar 

  • Zaarour R, Voiron C, Barakat L (2008) Création de données dans un contexte imprécis et incertain : application à la dynamique urbaine de Beyrouth—Liban (1956–1999). Incertitudes et Environnement.fin des certitudes scientifiques, in: EDISUD, collection Ecologie Humaine, pp 141–150

  • Zou B, Wilson G, Zhan FB, Zeng Y (2009) Spatially differentiated and source-specific population exposure to ambient urban air pollution. Atmos Environ 43:3981–3988

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our partners in this project on air quality in Beirut, Ile de France Region, Beirut Municipality, the Lebanese National Council for Scientific Research and the research council of the Saint Joseph University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Badaro-Saliba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badaro-Saliba, N., Adjizian-Gerard, J., Zaarour, R. et al. A geostatistical approach for assessing population exposure to NO2 in a complex urban area (Beirut, Lebanon). Stoch Environ Res Risk Assess 28, 467–474 (2014). https://doi.org/10.1007/s00477-013-0765-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0765-3

Keywords

Navigation