Hydrometeorological variability in the Korean Han River Basin and its sub-watersheds during different El Niño phases

  • Sun-Kwon Yoon
  • Jong-Suk Kim
  • Joo-Heon Lee
  • Young-Il Moon
Original Paper


This study investigated the characteristic changes in precipitation and runoff that occur in the Korean Han River Basin and its sub-basins in association with the cold-tongue (CT) and warm-pool (WP) El Niño phases during spring and summer. During the WP El Niño years, rainfall in spring and its coefficient of variation were higher than long-term normal precipitation. During the CT El Niño years, summers tended to be drier than in climatologically normal years, although the variability in precipitation during the summer was relatively lower. The data for runoff showed wetter springs compared to long-term normal years during both types of El Niño events and significant changes in runoff during summer under CT El Niño conditions. During the WP El Niño years, increased runoff was seen for 95.8 % of all basins and this increase was statistically significant for 58.3 % of these basins, but variability in runoff was small. Overall, the findings confirm that water resources in the Han River Basin during the spring and summer are sensitive to CT/WP El Niño events. Thus, for basins such as these, where seasonal variability and the uncertainty of hydrologic data are high, investigation of the relationship between climatic factors and hydrologic parameters is necessary to maintain the stability of the water supply system and to allow prediction for water resources.


Seasonal rainfall Runoff CT El Niño WP El Niño Han River South Korea 


  1. Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature. doi:10.1038/461481a
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  3. Bae DH, Jung IW, Chang HJ (2008) Long-term trend of precipitation and runoff in Korean river basins. Hydrol Process 22:2644–2656CrossRefGoogle Scholar
  4. Becker RA, Chambers JM, Wilks AR (1988) The new S language. Wadsworth & Brooks/Cole, USAGoogle Scholar
  5. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations. Oxford University Press, OxfordGoogle Scholar
  6. Bowman AW, Azzalini A (2007) R Package Sm: nonparametric smoothing methods (version 2.2). University of Glasgow, UK and Universita di padova, ItaliaGoogle Scholar
  7. Chang HJ (2008) Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res 42:3285–3304CrossRefGoogle Scholar
  8. Chang HJ, Jung IW (2010) Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J Hydrol 388:186–207CrossRefGoogle Scholar
  9. Chang CWJ, Hsu HH, Wu CR, Sheu WJ (2008) Interannual mode of sea level in the South China Sea and the roles of El Niño and El Niño Modoki. Geophys Res Lett 35:L03601. doi:10.1029/2007GL032562 CrossRefGoogle Scholar
  10. Dressler KA, Leavesley GH, Bales RC, Fassnacht SR (2006) Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrol Process 20:673–688CrossRefGoogle Scholar
  11. Feng J, Chen W, Tam CY, Zhou W (2010) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol. doi:10.1002/joc.2217 Google Scholar
  12. Gershunov A, Barnett TB, Cayan DR (1999) North Pacific interdecadal oscillations seen as factor in ENSO-related North American climate anomalies. Eos Trans Am Geophys Union. doi:10.1029/99EO00019
  13. Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25:537–554CrossRefGoogle Scholar
  14. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829CrossRefGoogle Scholar
  15. Jin YH, Kawamura A, Jinno K, Berndtsson R (2005) Detection of ENSO-influence on the monthly precipitation in South Korea. Hydrol Process 19:4081–4092CrossRefGoogle Scholar
  16. Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  17. Kim JS, Jain S (2011) Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology to characterize climate-related risk. Environ Res Lett 6:034033CrossRefGoogle Scholar
  18. Kim TW, Yoo CS, Ahn JH (2008) Influence of climate variation on seasonal precipitation in the Colorado River Basin. Stoch Environ Res Risk Assess 22:411–420CrossRefGoogle Scholar
  19. Kim JS, Jain S, Moon YL (2011) Atmospheric teleconnection-based conditional streamflow distributions for the Han River and its sub-watersheds in Korea. Int J Climatol. doi:10.1002/joc.2374
  20. Kim DW, Choi KS, Byun HR (2012a) Effects of El Nino Modoki on winter precipitation in Korea. Clim Dyn 38:1313–1324CrossRefGoogle Scholar
  21. Kim JS, Jain S, Yoon SK (2012b) Warm season streamflow variability in the Korean Han River Basin: links with atmospheric teleconnections. Int J Climatol 32(4):635–640CrossRefGoogle Scholar
  22. Kim JS, Li RCY, Zhou W (2012c) Effects of the Pacific-Japan teleconnection pattern on tropical cyclone activity and extreme events over the Korean peninsula. J Geophys Res 117:D18109CrossRefGoogle Scholar
  23. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  24. Kwon HH, Lall U, Obeysekera J (2009) Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for South Florida. Stoch Environ Res Risk Assess 7:879–896CrossRefGoogle Scholar
  25. Leavesley GH, Lichty RW, Troutman BM, Saindon LG (1983) Precipitation-Runoff modeling system. User’s manual. Water Resources Investigations: 83-4238 US Geological Survey, RestonGoogle Scholar
  26. Lee SM, Byun HR (2009) Some causes of the May drought over Korea. Asia-Pacific J Atmos Sci 45(3):247–264Google Scholar
  27. Lee SK, Wang C, Mapes B (2009) A simple atmospheric model of the local and teleconnection response to heating anomalies. J Clim 22:272–284CrossRefGoogle Scholar
  28. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  29. Na H, Jang BG, Choi WM, Kim KY (2011) Statistical simulations of the future 50-year statistics of cold-tongue El Niño and Warm-Pool El Niño. Asia-Pacific J Atmos Sci 47(3):223–233CrossRefGoogle Scholar
  30. NOAA (national weather service climate prediction center) (2012) http://www.cpc.ncep.noaa.gov/data/indices/. Accessed Jan 2012
  31. Piechota TC, Dracup JA (1996) Drought and regional hydrologic variation in the United States: associations with the El Niño-Southern oscillation. Water Resour Res 32(5):1359–1373CrossRefGoogle Scholar
  32. Piechota TC, Chiew Francis HS, Dracup JA, McMachon TA (1998) Seasonal streamflow forecasting in eastern Australia and the El Niño-Southern Oscillation. Water Resour Res 34(11):3035–3044CrossRefGoogle Scholar
  33. Pizarro G, Lall U (2002) El Niño-induced flooding in the US West: what can we expect? EOS Trans Am Geophys Union 83:349–352CrossRefGoogle Scholar
  34. Pradhan PK, Preethi B, Ashok K, Krishna R, Sahai AK (2011) Modoki, Indian Ocean Dipole, and western North Pacific typhoons: possible implications for extreme events. J Geophys Res 116:D18108. doi:10.1029/2011JD015666 CrossRefGoogle Scholar
  35. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670
  36. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031 CrossRefGoogle Scholar
  37. Ripley BD (1987) Stochastic simulation. WileyGoogle Scholar
  38. Schonher T, Nicholson SE (1989) The relationship between California rainfall and ENSO events. J Clim 2:1258–1269CrossRefGoogle Scholar
  39. She D, Xia J (2012) The spatial and temporal analysis of dry spells in the Yellow River basin, China. Stoch Environ Res Risk Assess. doi:10.1007/s00477-011-0553-x
  40. Trenberth KE (1997) The definition of El Niño. National Center for Atmospheric Research. Bulletin of the American Meteorological Society, pp 2771–2777Google Scholar
  41. WAMIS (water management information system) (2012) http://wamis.go.kr/eng/. Accessed Jan 2012
  42. Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  43. Wang X, Wang D, Zhou W, Li CY (2011) Interdecadal modulation of the influence of La Niña events on mei-yu rainfall over the Yangtze River Valley. Adv Atmos Sci 29(1):157–168. doi:10.1007/s00376-011-1021-8 CrossRefGoogle Scholar
  44. Weng H, Ashok K, Behera S, Rao S, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  45. Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758CrossRefGoogle Scholar
  46. Yeh SW, Kug JS, Dewitee B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sun-Kwon Yoon
    • 1
  • Jong-Suk Kim
    • 2
  • Joo-Heon Lee
    • 3
  • Young-Il Moon
    • 2
  1. 1.Climate Research DepartmentAPEC Climate CenterBusanRepublic of Korea
  2. 2.Department of Civil EngineeringThe University of SeoulSeoulRepublic of Korea
  3. 3.Department of Civil EngineeringJoongbu UniveristyChung-namRepublic of Korea

Personalised recommendations