Multi-site doubly stochastic Poisson process models for fine-scale rainfall

  • N. I. RameshEmail author
  • R. Thayakaran
  • C. Onof
Original Paper


We consider a class of doubly stochastic Poisson process models in the modelling of fine-scale rainfall at multiple gauges in a dense network. Multi-site stochastic point process models are constructed and their likelihood functions are derived. The application of this class of multi-site models, a useful alternative to the widely-known Poisson cluster models, is explored to make inferences about the properties of fine time-scale rainfall. The proposed models, which incorporate covariate information about the catchment area, are used to analyse tipping-bucket raingauge data from multiple sites. The results show the potential of this class of models to reproduce temporal and spatial variability of fine time-scale rainfall characteristics.


Doubly stochastic Poisson process Rainfall modelling Maximum likelihood Multi-site models Bucket tip-time series Fine-scale rainfall 



We thank an anonymous reviewer for useful comments that have greatly improved the manuscript.


  1. Bellone E, Hughes JP, Guttorp P (2000) A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Clim Res 15:1–12CrossRefGoogle Scholar
  2. Cowpertwait P, Isham V, Onof C (2007) Point process models of rainfall: developments for fine-scale structure. Proc R Soc A 463:2569–2587CrossRefGoogle Scholar
  3. Cox DR (1955) Some statistical methods connected with series of events (with discussion). J R Stat Soc Ser B 27:12964Google Scholar
  4. Cox DR, Isham V (1980) Point processes. Chapman and Hall, LondonGoogle Scholar
  5. Davison AC, Ramesh NI (1996) Some models for discretized series of events. J Am Stat Assoc 91:601–609CrossRefGoogle Scholar
  6. Einfalt T, Arnbjerg-Nielsen, K, Golz C, Jensen N-E, Quirmbach M, Vaes G, Vieux B (2004) Towards a roadmap for use of radar rainfall data in urban drainage. J Hydrol 299(3–4):186–202Google Scholar
  7. Hughes JP, Guttorp P (1994) A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour Res 30:1535–1546CrossRefGoogle Scholar
  8. Lilley M, Lovejoy S, Desaulniers-Soucy N, Schertzer D (2006) Multifractal large number of drops limit in rain. J Hydrol 328(1–2):20–37CrossRefGoogle Scholar
  9. Lovejoy S, Schertzer D (2006) Multifractals, cloud radiances and rain. J Hydrol 322(1–4):59–88CrossRefGoogle Scholar
  10. Moore RJ, Jones DA, Cox DR, Isham VS (2000) Design of the HYREX raingauge network. Hydrol Earth Syst Sci 4(4):521–530CrossRefGoogle Scholar
  11. Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham VS (2000) Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14(6):384–411CrossRefGoogle Scholar
  12. Onof C, Wheater HS (1993) Modelling of British rainfall using a random parameter Bartlett–Lewis rectangular pulse model. J Hydrol 149(1–4): 67–95CrossRefGoogle Scholar
  13. Onof C, Yameundjeu B, Paoli JP, Ramesh NI (2002) A Markov modulated Poisson process model for rainfall increments. Water Sci Technol 45:91–97Google Scholar
  14. Ramesh NI (1995) Statistical analysis on Markov-modulated Poisson processes. Environmetrics 6:165–179CrossRefGoogle Scholar
  15. Ramesh NI (1998) Temporal modelling of short-term rainfall using Cox processes. Environmetrics 9: 629–643CrossRefGoogle Scholar
  16. Ramesh NI, Onof C, Xie, D (2012) Doubly stochastic Poisson process models for precipitation at fine time-scales. Adv Water Res 45:58–64Google Scholar
  17. Rodriguez-Iturbe I, Cox DR, Valerie Isham (1987) Some models for rainfall based on stochastic point processes. Proc R Soc Lond A 410(1839):269–288Google Scholar
  18. Ross, SM (1983) Stochastic processes. Wiley, New YorkGoogle Scholar
  19. Schmitt TG (2000) ATV-DVWK Kommentar, ATV-A 118 Hydraulische Berechnung von Entwsserungssystemen. DWA, HennefGoogle Scholar
  20. Segond M-L, Wheater HS, Onof C (2007) The significance of spatial rainfall representation for flood runoff estimation: a numerical evaluation based on the Lee catchment, UK. J Hydrol 347:116–131CrossRefGoogle Scholar
  21. Smith JA, Karr AF (1983) A point process model of summer season rainfall occurrences. Water Resour Res 19:95–103CrossRefGoogle Scholar
  22. Smith JA, Karr AF (1985) Statistical inference for point process models of rainfall. Water Resour Res 21:73–79CrossRefGoogle Scholar
  23. Smith RL (1984). Contribution to the discussion of Stern RD, Coe R. A model fitting analysis of daily rainfall data (with discussion). J R Stat Soc Ser A 147:24–25Google Scholar
  24. Srikanthan R, Pegram GGS (2009) A nested multisite daily rainfall stochastic generation model. J Hydrol 371:142–153CrossRefGoogle Scholar
  25. Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data (with discussion). J R Stat Soc Ser A 147:1–34CrossRefGoogle Scholar
  26. Thayakaran R, Ramesh NI (2012) Multivariate models for rainfall based on Markov modulated Poisson processes. Hydrol Res (in press, to appear)Google Scholar
  27. Thompson CS, Thomson PJ, Zheng X (2007) Fitting a multisite daily rainfall model to New Zealand data. J Hydrol 340:25–39CrossRefGoogle Scholar
  28. Venugopal V, Roux SR, Foufoula-Georgiou E, Arnodo A (2006) Scaling behavior of high resolution temporal rainfall: new insights from a wavelet-based cumulant analysis. Phys Lett A 348(3–6):335–345Google Scholar
  29. Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C, Lekkas D, Lourmas G, Segond M-L (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19(6):403–416CrossRefGoogle Scholar
  30. Wood SJ, Jones DA, Moore RJ (2000) Accuracy of rainfall measurements for scales of hydrological interest. Hydrol Earth Syst Sci 4(4):531–543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Computing and Mathematical Sciences, University of Greenwich, Maritime Greenwich CampusLondonUK
  2. 2.Department of Civil and Environmental EngineeringImperial College LondonLondonUK

Personalised recommendations