Skip to main content

Advertisement

Log in

Screening level ecological risk assessment for synthetic musks in surface water of Lake Taihu, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A total of thirty-three surface water samples were collected from Meiliang Bay, Gonghu Bay and Xukou Bay of Lake Taihu, and analyzed for synthetic musks, including 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), 1-tert-butyl-3,5-dimethyl-2,5-dinitro-4-acetylbenzene (MK) and 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (MX). Ecological risks of these compounds were characterized by hazard quotient (HQ) method due to a lack of sufficient available toxicity data of synthetic musks. HHCB was the main synthetic musk detected in Lake Taihu, followed by AHTN, MK, and MX. The risk assessment results indicate that low ecological risks were posed by HHCB and total synthetic musks, and even lower risks posed by other synthetic musks in the worst case; much lower ecological risks were caused by both individual and total synthetic musks in the general case. The combined ecological risk from total synthetic musks calculation suggests that the combined ecological risk from all four synthetic musks was expected to be slightly higher than for the individual musks due to their joint action. The HQ spatial distribution maps show that several hot-spot areas were mainly around the river inlets to Lake Taihu, indicating that synthetic musks may be transported to Lake Taihu with municipal sewage and industrial wastewater from surrounding areas. However, the ecological risks in hot-spot areas posed by individual and total synthetic musks were still acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Benekos ID, Shoemaker CA, Stedinger JR (2007) Probabilistic risk and uncertainty analysis for bioremediation of four chlorinated ethenes in groundwater. Stoch Environ Res Assess 21:375–390. doi:10.1007/s00477-006-0071-4

    Article  Google Scholar 

  • Berset JD, Kupper T, Etter R, Tarradellas J (2004) Considerations about the enantio selective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant. Chemosphere 57:986–987. doi:org/10.1016/j.chemosphere.2004.07.020

    Article  Google Scholar 

  • Bester K (2004) Retention characteristic and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere 57:863–870. doi:10.1016/j.chemosphere.2004.08.032

    Article  CAS  Google Scholar 

  • Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, Brumn H (2002) Estrogenic activity of musk fragrances detected by the E-Screen assay using human MCF-7 cells. Arch Environ Contam Toxicol 43:257–264. doi:10.1007/s00244-002-1192-5

    Article  CAS  Google Scholar 

  • Carlsson G, Norrgren L (2004) Synthetic musk toxicity to early life stages of zebrafish (Danio rerio). Arch Environ Contam Toxicol 46:102–105. doi:10.1007/s00244-003-2288-2

    Article  CAS  Google Scholar 

  • Carrasco IJ, Chang SY (2005) Random Monte Carlo simulation analysis and risk assessment for ammonia concentrations in wastewater effluent disposal. Stoch Environ Res Assess 19:134–145. doi:10.1007/s00477-004-0221-5

    Article  Google Scholar 

  • Croudace CP, Caunter JE, Johnson PA, Wallace SJ (1997) AHTN: Chronic toxicity to fathered minnow (Pimephales promelas) embryos and larvae. Report to RIFM, Zeneca Project Report BL5933/B

  • Duedahl-Olesen L, Cderberg T, Pedersen KH, Hojgard A (2005) Synthetic musk fragrances in trout from Danish fish farms and human milk. Chemosphere 61:422–431. doi:10.1016/j.chemosphere.2005.02.004

    Article  CAS  Google Scholar 

  • EU (1996) Technical guidance document on risk assessment in support of council directive 93/67/EEC on risk assessment for new notified substances, commission regulation (EC) 1488/94 on risk assessment for existing substances

  • Grutzner I (1995) Musk ketone: 21-day prolonged toxicity study in the rainbow trout under flow-through conditions. Report to RIFM, RCC. Switzerland. Project 380700

  • Guo GH, Wu FC, He HP, Zhang RQ, Feng CL, Li HX, Chang M (2012a) Characterizing ecological risk for polycyclic aromatic hydrocarbons in water from Taihu Lake, China. Environ Monit Assess. doi:10.1007/s10661-011-2460-5

  • Guo GH, Wu FC, He HP, Zhang RQ, Li HX (2012b) Ecological risk assessment of organochlorine pesticides in surface waters of Lake Taihu, China. Int J Hum Ecolog Risk Assess (in press)

  • Guo R, Lee IS, Kim UJ, Oh JE (2010) Occurrence of synthetic musks in Korean sewage sludge. Sci Total Environ 408:1634–1639. doi:10.1016/j.scitotenv.2009.12.009

    Google Scholar 

  • Hu ZJ, Shi YL, Cai YQ (2011a) Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China. Chemosphere. doi:10.1016/j.chemosphere.3011.05.013

  • Hu ZJ, Shi YL, Zhang SX, Niu HY, Cai YQ (2011b) Assessment of synthetic musk fragrances in seven wastewater treatment plants of Beijing, China. Bull Environ Contam Toxicol 86:302–306. doi:10.1007/s00128-011-0215-1

    Article  CAS  Google Scholar 

  • Hutter HP, Wallnere P, Moshammer H, Hartl W, Sattelberger R, Lorbeer G, Kundi M (2005) Blood concentrations of polycyclic musks in healthy young adults. Chemosphere 59:487–492. doi:10.1016/j.chemosphere.2005.01.070

    Article  CAS  Google Scholar 

  • Kannan K, Reiner JL, Yun SH, Perrotta EE, Tao L, Johnson-Restrepo B, Rodan BD (2005) Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere 61:693–700. doi:10.1016/j.chemospher.2005.03.041

    Article  CAS  Google Scholar 

  • Kupper T, Plagellar C, Brandli RC, de Alencastro LF, Grandjean D, Tarradellas J (2006) Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment. Water Res 40:2603–2612. doi:10.1016/j.watres.2006.04.012

    Article  CAS  Google Scholar 

  • Luckenbach T, Epel D (2005) Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotics defense systems mediated by multidrug transporters. Environ Health Perspect 113:17–24. doi:10.1289/ehp.7301

    Article  CAS  Google Scholar 

  • Luo MF, Opaluch JJ (2011) Analyze the risks of biological invasion: an agent based simulation model for introducing non-native oysters in Chesapeake Bay, USA. Stoch Environ Res Risk Assess 25:377–388. doi:10.1007/s00477-010-0375-2

    Article  Google Scholar 

  • Lv Y, Yuan T, Hu JY, Wang WH (2010) Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China. Sci Total Environ 408:4170–4176. doi:org/10.1016/j.scitotenv.2010.05.003

  • Müller S, Schmid P, Schlatter C (1996) Occurrence of nitro and non-nitro benzenoid musk compounds in human adipose tissue. Chemosphere 33:17–28. doi:10.1016/0045-6535(96)00160-9

    Article  Google Scholar 

  • Muschal M (2006) Assessment of risk to aquatic biota from elevated salinity—a case study from the Hunter River, Australia. J Environ Manag 79:266–278. doi:10.1016/j.jenvman.2005.08.002

    Article  CAS  Google Scholar 

  • Nakata H (2005) Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters. Environ Sci Technol 39:3430–3434. doi:10.1021/es050199l

    Article  CAS  Google Scholar 

  • Peck AM, Hornbuckle KC (2004) Synthetic musk fragrances in Lake Michigan. Environ Sci Technol 38:367–372. doi:10.1021/es034769y

    Article  CAS  Google Scholar 

  • Peck AM, Linebaugh EK, Hornbuckle KC (2006) Synthetic musk fragrances in Lake Erie and Lake Ontario sediment cores. Environ Sci Technol 40:5629–5635. doi:10.1021/es060134y

    Article  CAS  Google Scholar 

  • Qin Y, Yang ZF, Yang W (2011) Ecological risk assessment for water scarcity in China’s Yellow River Delta wetland. Stoch Environ Res Risk Assess 25:697–711. doi:10.1007/s0047-011-0479-3

    Article  Google Scholar 

  • Reiner JL, Kannan K (2006) A survey of polycyclic musks in selected household commodities from the United States. Chemosphere 62:867–873. doi:10.1016/j.chemosphere.2005.10.006

    Article  CAS  Google Scholar 

  • Reiner JL, Wong CM, Arcaro KF, Kannan KC (2007) Synthetic musk fragrances in human milk from the United States. Environ Sci Technol 41:3815–3820. doi:10.1021/es063088a

    Article  CAS  Google Scholar 

  • Roosens L, Covaci A, Neel H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69:1540–1547. doi:10.1016/j.chemosphere.2007.05.072

    Article  CAS  Google Scholar 

  • Sanchez-Bayo F, Baskaran S, Kennedy IR (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agric Ecosyst Environ 91:37–57. doi:10.1016/s0167-8809(01)00258-4

    Article  Google Scholar 

  • Schreurs RH, Legler J, Artola-Garicano E, Sinnige TL, Lanser PH, Seinen W, van der Burg B (2004) In vitro and in vivo antiestrogenic effects of polycyclic musks in Zebrafish. Environ Sci Technol 38:997–1002. doi:10.1021/es03648y

    Article  CAS  Google Scholar 

  • Schuler LJ, Hoang TC, Rand GM (2008) Aquatic risk assessment of copper in freshwater and saltwater ecosystems of South Florida. Ecotoxicol 17:642–659. doi:10.1007/s10646-008-0236-7

    Article  CAS  Google Scholar 

  • Shek WM, Murphy MB, Lam JCW, Lam PKS (2008) Synthetic polycyclic musks in Hong Kong sewage sludge. Chemosphere 71:1241–1250. doi:10.1016/j.chemosphere.2007.11.069

    Article  CAS  Google Scholar 

  • Simonich SL, Federle TW, Eckhoff WS, Rottiers A, Webb S, Sabaliunas DM, de Wolf W (2002) Removal of fragrance materials during U. S. and European wastewater treatment. Environ Sci Technol 36:2839–2847. doi:10.1021/es025503e

    Article  CAS  Google Scholar 

  • Sumner NR, Guitart C, Fuentes G, Readman JW (2010) Inputs and distributions of synthetic musk fragrances in an estuarine and coastal environment: a case study. Environ Pollut 158:215–222. doi:10.1016/j.envpol.2009.07.018

    Article  CAS  Google Scholar 

  • Wan Y, Wei QW, Hu JY, Jin XH, Zhang ZB, Zhen HJ, Liu JY (2007) Levels, tissue distribution, and aged-related accumulation of synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): comparison to organochlorines. Environ Sci Technol 41:424–430. doi:10.1021/es061771r

    Article  CAS  Google Scholar 

  • Wang X, Bai SY, Lu XG, Li QF, Zhang XL, Li Y (2008) Ecological risk assessment of eutrophication in Songhua Lake, China. Stoch Environ Res Risk Assess 19:134–145. doi:10.1007/s00477-004-0221-5

    Google Scholar 

  • Wollenberger L, Breitholtz M, Ole KK, Bengtsson BE (2003) Inhibition of larval development of the marine copeod Acartia tonsa by four synthetic musk substances. Sci Total Environ 305:53–64. doi:10.1016/s0048-9697(02)0047-0

    Article  CAS  Google Scholar 

  • Wu F, Qing H, Wan G (2001) Regeneration of N, P and Si near the sediment/water interface of lakes from Southwestern China Plateau. Water Res 35:1334–1337. doi:org/10.1016/s0043-1354(00)00380-8

    Article  CAS  Google Scholar 

  • Wüthrich V (1996) Influence of HHCB on the reproduction of Daphnia magna. Report to RIFM, RCC Umweltchemie AG Project 380687

  • Xie ZY, Ebingghaus R, Temme C, Heemken O, Ruck W (2007) Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic. Environ Sci Technol 41:5654–5659. doi:10.1021/es0704434

    Article  CAS  Google Scholar 

  • Yamagishi T, Miyazaki T, Horii S, Kaneko S (1981) Identification of musk xylene and musk ketone in freshwater fish collected from the Tama River, Tokyo. Bull Environ Contam Toxicol 26:656–662. doi:10.1007/bf01622152

    Article  CAS  Google Scholar 

  • Zeng XY, Mai BX, Sheng GY, Luo XJ, Shao WL, An TC, Fu JM (2008) Distribution of polycyclic musks in surface sediments from the Pearl River Delta and Macao Coastal region, south China. Environ Toxicol Chem 27:18–23. doi:10.1897/07-106.1

    Article  CAS  Google Scholar 

  • Zhang XL, Yao Y, Zeng XY, Qian GR, Guo YW, Wu MH, Sheng GY, Fu JM (2008) Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere 72:1553–1558. doi:10.1016/j.chemosphere.2008.04.039

    Article  CAS  Google Scholar 

  • Zhang XL, Liang GF, Zeng XY, Zhou J, Sheng GY, Fu JM (2011) Levels of synthetic musk fragrances in human milk from three cities in the Yangtze River Delta in Eastern China. J Environ Sci 23:983–990. doi:10.1016/s1001-0742(10)60506-2

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Basic Research Program of China (973 Program, Grant No. 2008CB418200) and Natural Science Foundation of China (U0833606, 41130743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Chang Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, GH., Wu, FC., He, HP. et al. Screening level ecological risk assessment for synthetic musks in surface water of Lake Taihu, China. Stoch Environ Res Risk Assess 27, 111–119 (2013). https://doi.org/10.1007/s00477-012-0581-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0581-1

Keywords