Skip to main content
Log in

Bayesian flood frequency analysis in the light of model and parameter uncertainties

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashkar F, Ouarda TBMJ (1998) Approximate confidence intervals for quantiles of gamma and generalized gamma distributions. J Hydrol Eng 3(1):43–51

    Article  Google Scholar 

  • Benjamin JR, Cornell CA (1970) Probability statistics and decision for civil engineers. McGraw-Hill, New York

    Google Scholar 

  • Bobo B, Unny TE (1976) Model uncertainty in flood frequency analysis and frequency-based design. Water Resour Res 12(6):1109–1117

    Article  Google Scholar 

  • Chbab EH, van Noortwijk JM, Duits MT (2000) Bayesian frequency analysis of extreme river discharges. In: Toensmann F, Koch M, Kassel HerkulesVerlag (eds) River flood defence (international symposium on flood defence). Kassel, Germany, pp F51–F60

    Google Scholar 

  • Chowdhury JU, Stedinger JR (1991) Confidence interval for design flood with estimated skew coefficient, J. Hydraul Eng 117(7):811–931

    Article  Google Scholar 

  • Cohn TA, Lane WL, Baier WG (1997) An algorithm for computing moments-based flood quantile estimates when historical flood information is available. Water Resour Res 33(9):2089–2096

    Article  Google Scholar 

  • Cohn TA, Lane WL, Stedinger JR (2001) Confidence intervals for expected moments algorithm flood quantile estimates. Water Resour Res 37(6):1695–1706

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminem J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242

    Article  Google Scholar 

  • Haddad K, Rahman A (2003) Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch Environ Res Risk Assess 25:415–428

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Google Scholar 

  • Kuczera G (1982) Combining site-specific and regional information: an empirical Bayes approach. Water Resour Res 18(2):306–314

    Article  Google Scholar 

  • Kuczera G (1999) Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour Res 35(5):1551–1557

    Article  Google Scholar 

  • Laio F, Di Baldassarre G, Montanari A (2009) Model selection techniques for the frequency analysis of hydrological extremes. Water Resour Res 45(7). doi:10.1029/2007WR006666

  • Lee KS, Kim SU (2008) Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrol Process 22(12):1949–1964. doi:10.1002/hyp.6778

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2001) Historical information in a GMLE-GEV framework with partial duration and annual maximum series. Water Resour Res 37(10):2551–2557

    Article  Google Scholar 

  • Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132

    Article  Google Scholar 

  • Micevski T, Kuczera G (2009) Combining site and regional flood information using a Bayesian Monte Carlo approach. Water Resour Res 45, W04405. doi:10.1029/2008WR007173

  • O’Connell DRH, Ostenaa DA, Levish DR, Klinger RE (2002) Bayesian flood frequency analysis with paleohydrologic bound data. Water Resour Res 38(5):1058. doi:10.1029/2000WR000028

    Article  Google Scholar 

  • O’Connell DRH (2005) Nonparametric Bayesian flood frequency estimation. J Hydrol 313:79–96

    Article  Google Scholar 

  • Pilon PJ, Adamowski K (1993) Asymptotic variance of flood quantile in log Pearson type III distribution with historical information. J Hydrol 143(3–4):481–503

    Article  Google Scholar 

  • Reis DS Jr, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313(1–2):97–116

    Article  Google Scholar 

  • Ribatet M, Sauquet E, Gresillon J-M, Ouarda TBMJ (2007) A regional Bayesian POT model for flood frequency analysis. Stoch Env Res Risk Assess 21:327–339. doi:10.1007/s00477-006-0068-z

    Article  Google Scholar 

  • Seidou O, Ouarda T, Barbet M, Bruneau P, Bobee B (2006) A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour Res 42(11). doi: 10.1029/2005WR004397

  • Stedinger JR (1983) Confidence intervals for design events. J Hydraul Eng 109(1):13–27

    Article  Google Scholar 

  • Stedinger JR, Cohn TA (1986) Flood frequency analysis with historical and paleoflood information. Water Resour Res 22(5):785–793

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events, Chap. 18. In: D. Maidment (ed) Handbook of hydrology. McGraw-Hill, New York

  • Tang WH (1980) Bayesian frequency analysis. J Hydraul Div 106(7):1203–1218

    Google Scholar 

  • van Gelder PHAJM, van Noortwijk JM, Duits MT (1999) Selection of probability distribution with a case study on extreme Oder River discharges. Paper presented at 10th European conference on safety and reliability, European Safety and Reliability Association, Munich-Garching, Germany, pp 1475–1480

  • Whitley RJ, Hromadka TV II (1999) Approximate confidence intervals for design floods for a single site using a neural network. Water Resour Res 35(1):203–209. doi:10.1029/1998WR900016

    Article  Google Scholar 

  • Wood EF, Rodriguez-Iturbe I (1975a) Bayesian inference and decision making for extreme hydrologic events. Water Resour Res 11(4):533–554

    Article  Google Scholar 

  • Wood EF, Rodriguez-Iturbe I (1975b) A Bayesian approach to analyzing uncertainty among flood frequency models. Water Resour Res 11(6):839–843

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Major Program of National Natural Science Foundation of China (grant no. 51190095), the National Basic Research Program of China (also called 973 Program, grant no. 2010CB951102), and by the National Natural Science Foundation of China (grant no. 51079039, 51179046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Chang, W. & Li, B. Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stoch Environ Res Risk Assess 26, 721–730 (2012). https://doi.org/10.1007/s00477-011-0552-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0552-y

Keywords

Navigation