Skip to main content
Log in

On the performance of a new bivariate pseudo Pareto distribution with application to drought data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A new bivariate pseudo Pareto distribution is proposed, and its distributional characteristics are investigated. The parameters of this distribution are estimated by the moment-, the maximum likelihood- and the Bayesian method. Point estimators of the parameters are presented for different sample sizes. Asymptotic confidence intervals are constructed and the parameter modeling the dependency between two variables is checked. The performance of the different estimation methods is investigated by using the bootstrap method. A Markov Chain Monte Carlo simulation is conducted to estimate the Bayesian posterior distribution for different sample sizes. For illustrative purposes, a real set of drought data is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arnold BC (1990) A flexible family of multivariate Pareto distribution. J Stat Plan Inference 24(2):249–258

    Article  Google Scholar 

  • Chaccko M, Thomas PY (2007) Estimation of a parameter of bivariate Pareto distribution by ranked set sampling. J Appl Stat 34(6):703–714

    Article  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7(1):1–26

    Article  Google Scholar 

  • Fletcher R (1980) Practical methods of optimization: unconstrained optimization, vol 1. Wiley, New York

    Google Scholar 

  • Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168

    Google Scholar 

  • Goldfarb D (1970) A family of variable metric updates derived by variational means. Math Comput 24:23–26

    Article  Google Scholar 

  • Grimshaw SD (1993) Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 35:185–191

    Article  Google Scholar 

  • Hutchinson TP (1979) Four applications of a bivariate Pareto distribution. Biom J 21(6):553–563

    Article  Google Scholar 

  • Jeevanand ES, Padamaden V (1996) Parameter estimation for a bivariate Pareto distribution. Stat Pap 37:153–164

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  • Kotz S, Nadarajah S (2000) Extreme value distribution: theory and application. Imperial College Press, London

    Book  Google Scholar 

  • Mardia KV (1962) Multivariate Pareto distributions. Ann Math Stat 33(3):1008–1015

    Article  Google Scholar 

  • Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk Assess 21:223–233

    Article  Google Scholar 

  • Nadarajah S (2007) A bivariate gamma model for drought. Water Resour Res 43, W08501. doi:10.1029/2006WR005641

  • Nadarajah S (2009) A bivariate Pareto model for drought. Stoch Environ Res Risk Assess 23:811–822

    Article  Google Scholar 

  • Nadarajah S, Gupta AK (2006a) Cherian’s bivariate gamma distribution as a model for drought data. Agrociencia 40:483–490

    Google Scholar 

  • Nadarajah S, Gupta AK (2006b) Friday and Patil’s bivariate exponential distribution with application to drought data. Water Resour Manag 20:749–759

    Article  Google Scholar 

  • Nadarajah S, Kibria BMG (2006) Ratio of generalized random variables with application. Stoch Environ Res Risk Assess 20:206–212

    Article  Google Scholar 

  • Rootzen H, Tajvidi N (2006) The multivariate generalized Pareto distribution. Bernoulli 12(5):917–930

    Article  Google Scholar 

  • Sarhan AM, El-Gohary A (2003) Estimations of parameters in Pareto reliability model in the presence of masked data. J Reliab Eng Syst Saf 82:75–83

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China using copulas. Hydrol Process 21:2157–2163

    Article  Google Scholar 

  • Yang DW, Nadarajah S (2006) Drought modeling and products of random variables with exponential kernel. Stoch Environ Res Risk Assess 21:123–129

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Associate editor and the two referees for their valuable comments and suggestions which greatly helped to improve the paper. The first author is also thankful to the Higher Education Commission of Pakistan for their financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mohsin.

Appendix

Appendix

The Fisher information matrix \( Q\left( {\hat{g}} \right) \)is given by:

$$ Q\left( {\hat{g}} \right) = - \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} L\left( g \right)}}{{\partial \alpha^{2} }}} & {\frac{{\partial^{2} L\left( g \right)}}{\partial \alpha \partial \beta }} & 0 & 0 & 0 \\ {\frac{{\partial^{2} L\left( g \right)}}{\partial \beta \partial \alpha }} & {\frac{{\partial^{2} L\left( g \right)}}{{\partial \beta^{2} }}} & 0 & 0 & 0 \\ 0 & 0 & {\frac{{\partial^{2} L\left( g \right)}}{{\partial \gamma^{2} }}} & {\frac{{\partial^{2} L\left( g \right)}}{\partial \gamma \partial \delta }} & {\frac{{\partial^{2} L\left( g \right)}}{\partial \gamma \partial \eta }} \\ 0 & 0 & {\frac{{\partial^{2} L\left( g \right)}}{\partial \delta \partial \gamma }} & {\frac{{\partial^{2} L\left( g \right)}}{{\partial \delta^{2} }}} & {\frac{{\partial^{2} L\left( g \right)}}{\partial \delta \partial \eta }} \\ 0 & 0 & {\frac{{\partial^{2} L\left( g \right)}}{\partial \eta \partial \gamma }} & {\frac{{\partial^{2} L\left( g \right)}}{\partial \eta \partial \delta }} & {\frac{{\partial^{2} L\left( g \right)}}{{\partial \eta^{2} }}} \\ \end{array} } \right] $$

The corresponding entries are

$$ \frac{{\partial^{2} L\left( g \right)}}{{\partial \alpha^{2} }} = - \frac{n\beta }{{\alpha^{2} }} + \left( {\beta + 1} \right)\sum\limits_{i = 1}^{n} {\frac{1}{{\left( {\alpha + x_{i} } \right)^{2} }}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{\partial \alpha \partial \beta } = \frac{n}{\alpha } - \sum\limits_{i = 1}^{n} {\frac{1}{{\left( {\alpha + x_{i} } \right)}}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{{\partial \beta^{2} }} = - \frac{n}{{\beta^{2} }} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{{\partial \gamma^{2} }} = - \frac{n}{{\gamma^{2} }} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{\partial \gamma \partial \delta } = \sum\limits_{i = 1}^{n} {{ \ln }\left( {x_{i} } \right)} - \sum\limits_{i = 1}^{n} {\frac{{\eta x_{i}^{\delta } { \ln }\left( {x_{i} } \right)}}{{\left( {\eta x_{i}^{\delta } + y_{i} } \right)}}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{\partial \gamma\partial \eta } = \frac{n}{\eta} - \sum\limits_{i = 1}^{n} {\frac{{x_{i}^{\delta }}}{{\left( {\eta x_{i}^{\delta } + y_{i} } \right)}}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{\partial {\delta^{2}} } = - \left( {\gamma + 1} \right)\sum\limits_{i =1}^{n} {\frac {\eta {x_{i}^{\delta }{y_{i} {\left( { \ln }\left({x_{i} } \right)\right)^2}}}}{{\left( {\eta x_{i}^{\delta } +y_{i} } \right)^{2} }}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{\partial \delta \partial \eta } = - \left( {\gamma + 1} \right)\sum\limits_{i = 1}^{n} {\frac{{y_{i} x_{i}^{\delta } { \ln }\left( {x_{i} } \right)}}{{\left( {\eta x_{i}^{\delta } + y_{i} } \right)^{2} }}} $$
$$ \frac{{\partial^{2} L\left( g \right)}}{{\partial \eta^{2} }} = - \frac{n\gamma }{{\eta^{2} }} + \left( {\gamma + 1} \right)\sum\limits_{i = 1}^{n} {\frac{{x_{i}^{2\delta } }}{{\left( {\eta x_{i}^{\delta } + y_{i} } \right)^{2} }}} $$

The estimated standard deviations of \( \hat{\alpha },\,\hat{\beta },\,\hat{\gamma },\,\hat{\delta } \) and \( \hat{\eta } \) are:

$$ \sigma \left( {\hat{\alpha }} \right) = \hat{\alpha }\sqrt {\frac{n}{{\left[ {n\left\{ {n\hat{\beta } - \hat{\alpha }^{2} \left( {\hat{\beta } + 1} \right)\sum\nolimits_{i = 1}^{n} {\frac{1}{{\left( {\hat{\alpha } + x_{i} } \right)^{2} }}} } \right\} - \left\{ {\hat{\alpha }^{2} \hat{\beta }^{2} \left( {\sum\nolimits_{i = 1}^{n} {\frac{1}{{\left( {\hat{\alpha } + x_{i} } \right)}} - \frac{n}{{\hat{\alpha }}}} } \right)^{2} } \right\}} \right]}}} $$
$$ \sigma \left( {\hat{\beta }} \right) = \hat{\beta }\sqrt {\frac{{n\hat{\beta } - \hat{\alpha }^{2} \left( {\hat{\beta } + 1} \right)\sum\nolimits_{i = 1}^{n} {\frac{1}{{\left( {\hat{\alpha } + x_{i} } \right)^{2} }}} }}{{\left[ {n\left\{ {n\hat{\beta } - \hat{\alpha }^{2} \left( {\hat{\beta } + 1} \right)\sum\nolimits_{i = 1}^{n} {\frac{1}{{\left( {\hat{\alpha } + x_{i} } \right)^{2} }}} } \right\} - \left\{ {\hat{\alpha }^{2} \hat{\beta }^{2} \left( {\sum\nolimits_{i = 1}^{n} {\frac{1}{{\left( {\hat{\alpha } + x_{i} } \right)}} - \frac{n}{{\hat{\alpha }}}} } \right)^{2} } \right\}} \right]}}} $$
$$ \sigma \left( {\hat{\gamma }} \right) = \sqrt {\frac{{\left( {BE - C^{2} } \right)}}{{\left[ {A\left( {CD - AB} \right) - C\left( {\frac{n}{{\hat{\gamma }^{2} }}C - AD} \right) + E\left( {\frac{n}{{\hat{\gamma }^{2} }}B - D^{2} } \right)} \right]}}} $$
$$ \sigma \left( {\hat{\delta }} \right) = \sqrt {\frac{{\left( {\frac{n}{{\hat{\gamma }^{2} }}E - A^{2} } \right)}}{{\left[ {A\left( {CD - AB} \right) - C\left( {\frac{n}{{\hat{\gamma }^{2} }}C - AD} \right) + E\left( {\frac{n}{{\hat{\gamma }^{2} }}B - D^{2} } \right)} \right]}}} $$
$$ \sigma \left( {\hat{\eta }} \right) = \sqrt {\frac{{\left( {\frac{n}{{\hat{\gamma }^{2} }}B - D^{2} } \right)}}{{\left[ {A\left( {CD - AB} \right) - C\left( {\frac{n}{{\hat{\gamma }^{2} }}C - AD} \right) + E\left( {\frac{n}{{\hat{\gamma }^{2} }}B - D^{2} } \right)} \right]}}} $$

where

$$ A = \sum\limits_{i = 1}^{n} {\frac{{x_{i}^{{\hat{\delta }}} }}{{\left( {\hat{\eta }x_{i}^{{\hat{\delta }}} + y_{i} } \right)}}} - \frac{n}{{\hat{\eta }}} $$
$$ B = \left( {\hat{\gamma } + 1} \right)\sum\limits_{i = 1}^{n} {\frac{{\hat{\eta }x_{i}^{{\hat{\delta }}} y_{i} \left( {{ \ln }\left( {x_{i} } \right)} \right)^{2} }}{{\left( {\hat{\eta }x_{i}^{{\hat{\delta }}} + y_{i} } \right)^{2} }}} $$
$$ C = \left( {\hat{\gamma } + 1} \right)\sum\limits_{i = 1}^{n} {\frac{{x_{i}^{{\hat{\delta }}} y_{i} { \ln }\left( {x_{i} } \right)}}{{\left( {\hat{\eta }x_{i}^{{\hat{\delta }}} + y_{i} } \right)^{2} }}} $$
$$ D = \sum\limits_{i = 1}^{n} {\frac{{\hat{\eta }x_{i}^{{\hat{\delta }}} { \ln }\left( {x_{i} } \right)}}{{\left( {\hat{\eta }x_{i}^{{\hat{\delta }}} + y_{i} } \right)}} - \sum\limits_{i = 1}^{n} {{ \ln }\left( {x_{i} } \right)} } $$
$$ E = \frac{{n\hat{\gamma }}}{{\hat{\eta }^{2} }} - \left( {\hat{\gamma } + 1} \right)\sum\limits_{i = 1}^{n} {\frac{{x_{i}^{{2\hat{\delta }}} }}{{\left( {\hat{\eta }x_{i}^{{\hat{\delta }}} + y_{i} } \right)^{2} }}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohsin, M., Spöck, G. & Pilz, J. On the performance of a new bivariate pseudo Pareto distribution with application to drought data. Stoch Environ Res Risk Assess 26, 925–945 (2012). https://doi.org/10.1007/s00477-011-0529-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0529-x

Keywords

Navigation