Skip to main content
Log in

Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Conventional geostatistics often relies on the assumption of second order stationarity of the random function (RF). Generally, local means and local variances of the random variables (RVs) are assumed to be constant throughout the domain. Large scale differences in the local means and local variances of the RVs are referred to as trends. Two problems of building geostatistical models in presence of mean trends are: (1) inflation of the conditional variances and (2) the spatial continuity is exaggerated. Variance trends on the other hand cause conditional variances to be over-estimated in certain regions of the domain and under-estimated in other areas. In both cases the uncertainty characterized by the geostatistical model is improperly assessed. This paper proposes a new approach to identify the presence and contribution of mean and variance trends in the domain via calculation of the experimental semivariogram. The traditional experimental semivariogram expression is decomposed into three components: (1) the mean trend, (2) the variance trend and (3) the stationary component. Under stationary conditions, both the mean and the variance trend components should be close to zero. This proposed approach is intended to be used in the early stages of data analysis when domains are being defined or to verify the impact of detrending techniques in the conditioning dataset for validating domains. This approach determines the source of a trend, thereby facilitating the choice of a suitable detrending method for effective resource modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chilès JP, Delfiner P (1999) Geostatistics, modeling spatial uncertainty. Wiley-Interscience, New York

    Google Scholar 

  • Costa JF (2009) Interpolating datasets with trends: a modified median Polish approach. Comput Geosci 35(11):2222–2230

    Article  Google Scholar 

  • Cressie N (1985) When are relative variograms useful in geostatistics? Math Geol 17(7):693–702

    Article  Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Davis M, David M (1978) Automatic kriging and contouring in the presence of trends (universal kriging made simple). J Can Pet Technol 17(1):90–99

    Google Scholar 

  • Demyanov V, Soltani S, Kanevski M, Canu S, Maignan M, Savelieva E, Timonin V, Pisarenko V (2001) Wavelet analysis residual kriging vs. neural network residual kriging. Stoch Environ Res Risk Assess 15(1):18–32

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  • Deutsch CV, Journel A (1997) GsLib: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Gneiting T, Sasvári Z, Schlater M (2001) Analogies and correspondences between variograms and covariance functions. Appl Probab 33(3):617–630

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gringarten E, Deutsch CV (2001) Teacher’s aide—variogram interpretation and modeling. Math Geol 33(4):507–534

    Article  Google Scholar 

  • Isaaks EH, Srivastava MR (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Journel A, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Journel AG, Rossi ME (1989) When do we need a trend model in kriging. Math Geol 21(7):715–739

    Article  Google Scholar 

  • Kanevski M, Arutyunyan R, Bolshov L, Demyanov V, Maignan M (1996) Artificial neural networks and spatial estimations of Chernobyl fallout. Geoinformatics 7(1–2):5–11

    Google Scholar 

  • Larrondo P, Deutsch CV (2004) Accounting for geological boundaries in geostatistical modeling of multiple rock types. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 3–12

    Google Scholar 

  • Leuangthong O, Deutsch CV (2004) Transformation of residuals to avoid artifacts in geostatistical modelling with a trend. Math Geol 36(3):287–305

    Article  Google Scholar 

  • Leuangthong O, Khan D, Deutsch CV (2008) Solved problems in geostatistics. Wiley-Interscience, Hoboken

    Google Scholar 

  • Manchuck JG, Leuangthong O, Deutsch CV (2009) The proportional effect. Math Geosci 41(7):799–816

    Article  Google Scholar 

  • Matheron G (1962) Traité de Géostatistique Appliquée. Technip, Paris

  • Matheron G (1969) Le krigeage universel. Les Cahiers du Centre de Morphologie Math. Fasc. 1, Ed. CG. Fontainebleau. http://cg.ensmp.fr/bibliotheque/public/MATHERON_Ouvrage_00131.pdf

  • McLennan JA (2007) The decision of stationarity. Dissertation, University of Alberta, Edmonton

  • Myers DE (1989) To be or not to be… stationary? That is the question. Math Geol 21(3):347–362

    Article  Google Scholar 

  • Neuman SP, Jacobson EA (1984) Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels. Math Geol 16(5):499–521

    Article  Google Scholar 

  • Olea RA (1974) Optimal contour mapping using universal kriging. J Geophys Res 79(5):695–702

    Article  Google Scholar 

  • Olea RA (1991) Geostatistical glossary and multilingual dictionary. Oxford University Press, New York

    Google Scholar 

  • Olea RA (2006) A six-step practical approach to semivariogram modelling. Stoch Environ Res Risk Assess 20(5):307–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Cuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuba, M.A., Leuangthong, O. & Ortiz, J.M. Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling. Stoch Environ Res Risk Assess 26, 247–260 (2012). https://doi.org/10.1007/s00477-011-0501-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0501-9

Keywords

Navigation