Skip to main content
Log in

Lagrangian simulations of unstable gravity-driven flow of fluids with variable density in randomly heterogeneous porous media

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A new Lagrangian particle model based on smoothed particle hydrodynamics (SPH) is developed and used to simulate Darcy scale flow and transport in porous media. The method has excellent conservation properties and treats advection exactly. The Lagrangian method is used in stochastic analysis of miscible density-driven fluid flows. Results show that heterogeneity significantly increases dispersion and slows development of Rayleigh–Taylor instability. The presented numerical examples illustrate the advantages of Lagrangian methods for stochastic transport simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen M, Tildesley D (2001) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New York

    Google Scholar 

  • Bolster D, Tartakovsky D, Dentz M (2007) Analytical models of contaminant transport in coastal aquifers. Adv Water Resour 30(9):1962–1972

    Article  Google Scholar 

  • Bolster D, Dentz M, Carrera J (2009) Effective two-phase flow in heterogeneous media under temporal pressure fluctuations. Water Resour Res 45:W05408

    Article  Google Scholar 

  • Cannon J, Zukoski E (1975) Turbulent mixing in vertical shafts under conditions applicable to fires in high rise buildings. Technical fire report no. 1 to the National Science Foundation, California Institute of Technology, Pasadena, CA

  • Chuoke RL, van Meurs P, van der Poel C (1959) The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Trans Inst Min Metall Pet Eng 216:188–194

    Google Scholar 

  • Coskuner G, Bentsen RG (1990) An extended theory to predict the onset of viscous instabilities for miscible displacements in porous media. Trans Porous Media 5:473–490

    Article  Google Scholar 

  • Cook AW, Dimotakis PE (2001) Transition stages of Rayleigh-Taylor instability between miscible fluids. J Fluid Mech 443:69–99

    Article  Google Scholar 

  • Deutsch C, Journel A (1992) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Dentz M, Tartakovsky DM, Abarca E, Guadagnini A, Sanchez-Vila X, Carrera J (2006) Variable-density flow in porous media. J Fluid Mech 561:209–235

    Article  CAS  Google Scholar 

  • Diersch H-J, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8–12):899–944

    Article  Google Scholar 

  • Duff RE, Harlow FH, Hirt CW (1962) Effects of diffusion on interface instability between gases. Phys Fluids 5(4):417–425

    Article  CAS  Google Scholar 

  • Fukuo Y (1969) Visco-elastic theory of the deformation of a confined aquifer. In: Land subsidence, vol 2. Proceedings the Tokyo symposium, IAHS Publication no 88, pp 547–562

  • Gingold R, Monaghan J (1977) Smoothed particle hydrodynamics:theory and application to non-spherical stars. Mon Not R Astron Soc 181:375

    Google Scholar 

  • Gouet-Kaplan M, Tartakovsky AM, Berkowitz B (2009) Interplay of resident and infiltrating water. Water Resour Res 45:W05416

    Article  Google Scholar 

  • Guadagnini A, Guadagnini L, Tartakovsky DM, Winter CL (2003) Random domain decomposition for flow in heterogeneous stratified aquifers. Stoch Environ Res Risk Assess 17:394–407

    Article  Google Scholar 

  • Herrera PA, Massabó M, Beckie RD (2009) A meshless method to simulate solute transport in heterogeneous porous media. Adv Water Resour 32:413–429

    Article  CAS  Google Scholar 

  • Jarman KD, Tartakovsky AM (2008) Divergence of solutions to solute transport moment equations. Geophys Res Lett 35:L15401

    Article  Google Scholar 

  • Johannsen K, Oswald S, Held R, Kinzelbach W (2006) Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium. Adv Water Resour 29(11):1690–1704

    Article  Google Scholar 

  • Lin G, Tartakovsky A (2009) An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Adv Water Resour 32:712–722

    Article  Google Scholar 

  • Liu M, Liu GR, Lam K (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32:305

    Article  Google Scholar 

  • Monaghan J (1994) Simulating free surface flows with sph. J Comput Phys 110:399

    Article  Google Scholar 

  • Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  Google Scholar 

  • Morris J, Fox P, Zhu Y (1997) Modeling low Reynolds number incompressible flows using sph. J Comput Phys 136:214

    Article  Google Scholar 

  • Neuman SP (2004) Stochastic groundwater models in practice. Stoch Environ Res Risk Assess 18:268–270

    Article  Google Scholar 

  • Neuweiler I, Attinger S, Kinzelbach W, King P (2003) Large scale mixing for immiscible displacement in heterogeneous porous media. Trans Porous Media 51(2):287–314

    Article  Google Scholar 

  • Orr F (2009) CO2 capture and storage: are we ready? Energy Environ Sci 2:449–458

    Article  CAS  Google Scholar 

  • Sharp D (1984) An overview of rayleigh-taylor instability. Physica D 12:3

    Article  Google Scholar 

  • Shi L, Yang J, Zhang D (2009) A stochastic approach to nonlinear unconfined flow subject to multiple random fields. Stoch Environ Res Risk Assess 23:823–835

    Article  Google Scholar 

  • Simmons C (2005) Variable density groundwater flow: from current challenges to future possibilities. Hydrogeol J 13(1):116–119

    Article  CAS  Google Scholar 

  • Simmons C, Fenstemaker T, Sharp J (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275

    Article  CAS  Google Scholar 

  • Tartakovsky DM (2000) Real gas flow through heterogeneous porous media: theoretical aspects of upscaling. Stoch Environ Res Risk Assess 14:109–122

    Article  Google Scholar 

  • Taylor G (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond 201:192

    Article  Google Scholar 

  • Tan CT, Homsy GM (1986) Stability of miscible displacements in porous media: rectilinear flow. Phys Fluids 29(11):3549–3556

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P (2005a) Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics. Vadose Zone J 4(3):848–855

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P (2005b) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P (2005c) A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. J Comput Phys 207:610–624

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P (2006) Pore-scale modeling of immiscible and miscible flows using smoothed particle hydrodynamics. Adv Water Resour 29:1464–1478

    Article  Google Scholar 

  • Tartakovsky AM, Neuman SP (2008) Effects of peclet number on pore-scale mixing and channeling of a tracer and on directional advective porosity. Geophys Res Lett 35:L21401

    Article  Google Scholar 

  • Tartakovsky DM, Guadanini A, Ballio F, Tartakovsky AM (2002a) Localization of mean flow and apparent transmissivity tensor for bounded randomly heterogeneous aquifers. Trans Porous Media 49(1):41–58

    Article  Google Scholar 

  • Tartakovsky AM, Neuman SP, Tartakovsky DM (2002b) Wetting front propagation in randomly heterogeneous soils. In: Raats P, Smiles D, Warrick A (eds) Heat and mass transfer in the natural environment: a tribute to J.R. Philip. Geophysical monograph. AGU, Washington, DC

  • Tartakovsky DM, Lu Z, Guadagnini A, Tartakovsky AM (2003a) Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters. J Hydrol 275:182–193

    Article  Google Scholar 

  • Tartakovsky AM, Neuman SP, Lenhard R (2003b) Immiscible front evolution in randomly heterogeneous porous media. Phys Fluids 15(11):3331–3341

    Article  CAS  Google Scholar 

  • Tartakovsky AM, Garcia-Naranjo L, Tartakovsky DM (2004a) Transient flow in a heterogeneous vadose zone with uncertain parameters. Vadose Zone J 3(1):154–163

    Google Scholar 

  • Tartakovsky AM, Meakin P, Huang H (2004b) Stochastic analysis of immiscible displacement of the fluids with arbitrarily viscosities and its dependence on support scale of hydrological data. Adv Water Resour 27:1151–1166

    Article  CAS  Google Scholar 

  • Tartakovsky AM, Ward AL, Meakin P (2007a) Heterogeneity effects on capillary pressure-saturation relations inferred from pore-scale modeling. Phys Fluids 19:103301

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P, Scheibe TD, West RME (2007b) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672

    Article  CAS  Google Scholar 

  • Tartakovsky AM, Meakin P, Scheibe T, Wood B (2007c) A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour Res 43:W05437

    Article  Google Scholar 

  • Tartakovsky AM, Tartakovsky DM, Meakin P (2008a) Stochastic langevin model for flow and transport in porous media. Phys Rev Lett 101:044502. doi:10.1103/PhysRevLett.101.044502

    Article  Google Scholar 

  • Tartakovsky AM, Redden G, Lichtner P, Scheibe T, Meakin P (2008b) Mixing-induced precipitation: experimental study and multi-scale numerical analysis. Water Resour Res 44:W06S04

    Article  Google Scholar 

  • Tartakovsky AM, Ferris KF, Meakin P (2009a) Multi-scale Lagrangian particle model for multiphase flows. Comput Phys Commun 180:1874–1881

    Article  CAS  Google Scholar 

  • Tartakovsky AM, Tartakovsky GD, Scheibe TD (2009b) Effects of incomplete mixing on multicomponent reactive transport. Adv Water Resour 32:1674–1679

    Article  CAS  Google Scholar 

  • Tartakovsky AM, Scheibe TD, Meakin P (2009c) Pore-scale model for reactive transport and biomass growth. J Porous Media 12(5):417–434

    Article  CAS  Google Scholar 

  • Tchelepi H, Orr F (1996) Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions. SPE Reserv Eng 9(4):266–271

    Google Scholar 

  • Wooding R (1969) Growth of fingers at an unstable diffusing interface in a porous medium or hele-shaw cell. J Fluid Mech 39:477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Laboratory Directed Research and Development program. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tartakovsky, A.M. Lagrangian simulations of unstable gravity-driven flow of fluids with variable density in randomly heterogeneous porous media. Stoch Environ Res Risk Assess 24, 993–1002 (2010). https://doi.org/10.1007/s00477-010-0402-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0402-3

Keywords

Navigation