Skip to main content

Advertisement

Log in

Bayesian model averaging assessment on groundwater management under model structure uncertainty

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study introduces Bayesian model averaging (BMA) to deal with model structure uncertainty in groundwater management decisions. A robust optimized policy should take into account model parameter uncertainty as well as uncertainty in imprecise model structure. Due to a limited amount of groundwater head data and hydraulic conductivity data, multiple simulation models are developed based on different head boundary condition values and semivariogram models of hydraulic conductivity. Instead of selecting the best simulation model, a variance-window-based BMA method is introduced to the management model to utilize all simulation models to predict chloride concentration. Given different semivariogram models, the spatially correlated hydraulic conductivity distributions are estimated by the generalized parameterization (GP) method that combines the Voronoi zones and the ordinary kriging (OK) estimates. The model weights of BMA are estimated by the Bayesian information criterion (BIC) and the variance window in the maximum likelihood estimation. The simulation models are then weighted to predict chloride concentrations within the constraints of the management model. The methodology is implemented to manage saltwater intrusion in the “1,500-foot” sand aquifer in the Baton Rouge area, Louisiana. The management model aims to obtain optimal joint operations of the hydraulic barrier system and the saltwater extraction system to mitigate saltwater intrusion. A genetic algorithm (GA) is used to obtain the optimal injection and extraction policies. Using the BMA predictions, higher injection rates and pumping rates are needed to cover more constraint violations, which do not occur if a single best model is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abarca E, Vazquez-Sune E, Carrera J, Capino B, Gamez D, Batlle F (2006) Optimal design of measures to correct seawater intrusion. Water Resour Res 42(9):W09415. doi:10.1029/2005WR004524

    Article  Google Scholar 

  • Ahlfeld DP, Heidari M (1994) Applications of optimal hydraulic control to groundwater systems. J Water Resour Plan Manag - ASCE 120(3):350–365

    Article  Google Scholar 

  • Aly AH, Peralta RC (1999) Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour Res 35(8):2523–2532

    Article  Google Scholar 

  • Baú DA, Mayer AS (2008) Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. J Contam Hydrol 100(1–2):30–46

    Article  Google Scholar 

  • Bayer P, Finkel M (2004) Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones. Water Resour Res 40(6):W06506. doi:10.1029/2003WR002675

    Article  Google Scholar 

  • Bayer P, Finkel M (2007) Optimization of concentration control by evolution strategies: formulation, application, and assessment of remedial solutions. Water Resour Res 43(2):W02410. doi:10.1029/2005WR004753

    Article  Google Scholar 

  • Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42(5):W05421. doi:10.1029/2005WR004480

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29

    Article  Google Scholar 

  • Bray RB, Hanor JS (1990) Spatial variations in subsurface pore fluid properties in a portion of Southeast Louisiana: implications for regional fluid flow and solute transport. Gulf Coast Assoc Geol Soc Trans XL, 53–64

  • Byrd RH, Lu P, Nocedal J, Zhu C (1994) A limited memory algorithms for bound constrained optimization. Northwestern University, Department of Electrical Engineering and Computer Science, Technical Report NAM-08

  • CAGWCC (2002) Conserve ground water our greatest natural resource, Capital Area Ground Water Conservation Commission. Newsletter 27(3), 4 pp

    Google Scholar 

  • Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady-state conditions 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions 3. Application to synthetic and field data. Water Resour Res 22(2):228–242

    Article  Google Scholar 

  • Carroll DL (1996) Chemical laser modeling with genetic algorithms. AIAA J 34(2):338–346

    Article  CAS  Google Scholar 

  • Chan N (1993) Robustness of the multiple realization method for stochastic hydraulic aquifer management. Water Resour Res 29(9):3159–3167

    Article  CAS  Google Scholar 

  • Dean S, Freer J, Beven K, Wade AJ, Butterfield D (2009) Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stoch Environ Res Risk Assess 23(7):991–1010

    Article  Google Scholar 

  • Dettinger MD, Wilson JL (1981) First-order analysis of uncertainty in numerical-models of groundwater flow Part 1. Mathematical development. Water Resour Res 17(1):149–161

    Article  Google Scholar 

  • Draper D (1995) Assessment and propagation of model uncertainty. J R Stat Soc Ser B 57(1):45–97

    Google Scholar 

  • Eggleston JR, Rojstaczer SA, Peirce JJ (1996) Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set. Water Resour Res 32(5):1209–1222

    Article  Google Scholar 

  • Feyen L, Gorelick SM (2004) Reliable groundwater management in hydroecologically sensitive areas. Water Resour Res 40(7):W07408. doi:10.1029/2003WR003003

    Article  Google Scholar 

  • Feyen L, Gorelick SM (2005) Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resour Res 41(3):W03019. doi:10.1029/2003WR002901

    Article  Google Scholar 

  • Feyen L, Beven KJ, De Smedt F, Freer J (2001) Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resour Res 37(3):625–638

    Article  Google Scholar 

  • Feyen L, Ribeiro PJ, De Smedt F, Diggle PJ (2003) Stochastic delineation of capture zones: classical versus Bayesian approach. J Hydrol 281(4):313–324

    Article  Google Scholar 

  • Foglia L, Mehl SW, Hill MC, Perona P, Burlando P (2007) Testing alternative ground water models using cross-validation and other methods. Ground Water 45(5):627–641

    Article  CAS  Google Scholar 

  • Georgakakos AP, Vlatsa DA (1991) Stochastic control of groundwater systems. Water Resour Res 27(8):2077–2090

    Article  Google Scholar 

  • Gorelick SM (1983) A review of distributed parameter groundwater-management modeling methods. Water Resour Res 19(2):305–319

    Article  Google Scholar 

  • Guan J, Aral MM (1999) Optimal remediation with well locations and pumping rates selected as continuous decision variables. J Hydrol 221(1–2):20–42

    Article  Google Scholar 

  • Guan JB, Kentel E, Aral MM (2008) Genetic algorithm for constrained optimization models and its application in groundwater resources management. J Water Resour Plan Manage - ASCE 134(1):64–72

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92

  • Hassan AE, Bekhit HM, Chapman JB (2008) Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis. J Hydrol 362(1–2):89–109

    Article  Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Statistical Science 14(4):382–401

    Article  Google Scholar 

  • Hsieh PA, Freckleton JR (1993) Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model, U.S. Geological Survey, Open-File Report 92-477.

  • Hyun Y, Lee KK (1998) Model identification criteria for inverse estimation of hydraulic parameters. Ground Water 36(2):230–239

    Article  CAS  Google Scholar 

  • Ko NY, Lee KK (2009) Convergence of deterministic and stochastic approaches in optimal remediation design of a contaminated aquifer. Stoch Env Res Risk Assess 23(3):309–318

    Article  Google Scholar 

  • Li X (2008) Bayesian model averaging on hydraulic conductivity estimation and groundwater head prediction. Ph.D. Dissertation, Louisiana State University, Baton Rouge, Louisiana

  • Li X, Tsai FT-C (2009) Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod. Water Resour Res 45:W09403. doi:10.1029/2008WR007488

    Article  Google Scholar 

  • Madigan D, Andersson SA, Perlman MD, Volinsky CT (1996) Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics-Theory and Methods 25(11):2493–2519

    Article  Google Scholar 

  • Mahesha A (1996) Control of seawater intrusion through injection-extraction well system. J Irrig Drain Eng - ASCE 122(5):314–317

    Article  Google Scholar 

  • Mantoglou A (2003) Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks. Stoch Env Res Risk Assess 17(5):339–352

    Article  Google Scholar 

  • Mayer AS, Kelley CT, Miller CT (2002) Optimal design for problems involving flow and transport phenomena in saturated subsurface systems. Adv Water Resour 25(8–12):1233–1256

    Article  Google Scholar 

  • McKinney DC, Lin MD (1994) Genetic algorithm solution of groundwater-management models. Water Resour Res 30(6):1897–1906

    Article  Google Scholar 

  • Minsker BS, Shoemaker CA (1998) Dynamic optimal control of in situ bioremediation of ground water. J Water Resour Plan Manag - ASCE 124(3):149–161

    Article  Google Scholar 

  • Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour Res 29(3):551–561

    Article  CAS  Google Scholar 

  • National Research Council (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academic Press, Washington, DC

    Google Scholar 

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk Assess 17(5):291–305

    Article  Google Scholar 

  • Oliver LD, Christakos G (1996) Boundary condition sensitivity analysis of the stochastic flow equation. Adv Water Resour 19(2):109–120

    Article  Google Scholar 

  • Ortiz CJ, Deutsch CV (2002) Calculation of uncertainty in the variogram. Math Geol 34(2):169–183

    Article  Google Scholar 

  • Park CH, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290(1–2):80–99

    Article  CAS  Google Scholar 

  • Poeter E, Anderson D (2005) Multimodel ranking and inference in ground water modeling. Ground Water 43(4):597–605

    Article  CAS  Google Scholar 

  • Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–163

    Article  Google Scholar 

  • Rahman A, Tsai FT-C, White CD, Carlson DA, Willson CS (2008a) Geophysical data integration, stochastic simulation and significance analysis of groundwater responses using ANOVA in the Chicot Aquifer system, Louisiana, USA. Hydrogeol J 16(4):749–764

    Article  Google Scholar 

  • Rahman A, Tsai FT-C, White CD, Willson CS (2008b) Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis. J Hydrol Eng - ASCE 13(10):915–925

    Article  Google Scholar 

  • Ranjithan S, Eheart JW, Garrett JH (1993) Neural network based screening for groundwater reclamation under uncertainty. Water Resour Res 29(3):563–574

    Article  Google Scholar 

  • Reichard EG, Johnson TA (2005) Assessment of regional management strategies for controlling seawater intrusion. J Water Resour Plan Manag - ASCE 131(4):280–291

    Article  Google Scholar 

  • Russo D (1988) Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic-properties. Water Resour Res 24(3):453–459

    Article  Google Scholar 

  • Singh A, Minsker BS (2008) Uncertainty-based multiobjective optimization of groundwater remediation design. Water Resour Res 44(2):W02404. doi:10.1029/2005WR004436

    Article  Google Scholar 

  • Smalley JB, Minsker BS, Goldberg DE (2000) Risk-based in situ bioremediation design using a noisy genetic algorithm. Water Resour Res 36(10):3043–3052

    Article  CAS  Google Scholar 

  • Tolson BA, Shoemaker CA (2008) Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resour Res 44(4):W04411. doi:10.1029/2007WR005869

    Article  Google Scholar 

  • Tomaszewski DJ (1996) Distribution and movement of saltwater in aquifers in the Baton Rouge area, Louisiana, 1990–1992. Louisiana Department of Transportation and Development Water Resources Technical Report No. 59

  • Tsai FT-C (2006) Enhancing random heterogeneity representation by mixing the kriging method with the zonation structure. Water Resour Res 42(8):W08428. doi:08410.01029/02005WR004111

    Article  Google Scholar 

  • Tsai FT-C, Li X (2008a) Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour Res 44(9):W09434. doi:10.1029/2007WR006576

    Article  Google Scholar 

  • Tsai FT-C, Li X (2008b) Multiple parameterization for hydraulic conductivity identification. Ground Water 46(6):851–864

    CAS  Google Scholar 

  • Tsai FT-C, Yeh WW-G (2004) Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation. Water Resour Res 40:W10102. doi:10.1029/2003WR002893

    Article  Google Scholar 

  • Tung YK (1986) Groundwater management by chance-constrained model. J Water Resour Plan Manag - ASCE 112(1):1–19

    Article  Google Scholar 

  • USEPA (1997) Guiding principles for Monte Carlo analysis. U.S. Environmental Protection Agency, EPA/630/R-97/001

  • Wagner BJ (1995) Recent advances in simulation-optimization groundwater management modeling. Rev Geophys 33:1021–1028

    Article  Google Scholar 

  • Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174

    Article  CAS  Google Scholar 

  • Wagner BJ, Gorelick SM (1989) Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: from data to design. Water Resour Res 25(10):2211–2225

    Article  CAS  Google Scholar 

  • Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty: stochastic programming approaches and the value of information. Water Resour Res 28(5):1233–1246

    Article  CAS  Google Scholar 

  • Watkins DW, McKinney DC (1997) Finding robust solutions to water resources problems. J Water Resour Plan Manag - ASCE 123(1):49–58

    Article  Google Scholar 

  • Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40(5):W05113. doi:10.1029/2003WR002557

    Article  Google Scholar 

  • Yeh WW-G (1992) Systems analysis in groundwater planning and management. J Water Resour Plan Manag - ASCE 118(3):224–237

    Article  Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems (Release DoD_3.50.A), Documentation and User’s Guide

Download references

Acknowledgements

The study was supported in part by the Department of the Interior, U.S. Geological Survey under Grant No. 05HQGR0142 and 06HQGR0088. The views and conclusions contained in the document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. The author acknowledges Xiaobao Li and Asheka Rahman for their prior input. The constructive reviews were provided by the guest editors Philip Meyer and Ming Ye, and one anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T.-C. Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, F.TC. Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stoch Environ Res Risk Assess 24, 845–861 (2010). https://doi.org/10.1007/s00477-010-0382-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0382-3

Keywords

Navigation