Skip to main content
Log in

A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study develops a full Bayesian GEV distribution estimation method (BAYBETA), which contains a semi-Bayesian framework of generalized maximum likelihood estimator (GMLE), to make full use of several advantages of the Bayesian approach especially in uncertainty analysis. For the full Bayesian framework, the optimal hyperparameter of beta prior distribution on the shape parameter of the GEV distribution is found as (6.4990, 8.7927) through simulation-based analysis. In a performance comparison analysis, the performances of BAYBETA, which adopts beta(6.4990, 8.7927) as prior density on the shape parameter of the GEV distribution, are almost the same as or slightly better than GML, outperforming MOM, ML, and LM in terms of root mean square error (RMSE) and bias when the shape parameter is negative. Also, a case study of two hydrologic extreme value data shows that the traditional uncertainty analysis using asymptotic approximation of ML and GML has limitations in describing the uncertainty in high upper quantiles, while the proposed full Bayesian estimation method BAYBETA provides a consistent and complete description of the uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bates BC, Campbell EP (2001) A Markov Chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res 37(4):937–947

    Article  Google Scholar 

  • Beirlant J, Goegebeir Y, Teigels J, Segers J, De Wall D, Ferro C (2004) Statistics of extremes. Wiley, West Sussex

    Book  Google Scholar 

  • Casella G, Berger RL (2001) Statistical inference, 2nd edn. Duxbury, Pacific Grove

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Google Scholar 

  • Coles S (2004) The use and misuse of extreme value models in practice. In: Finkenstädt B, Rootzén H (eds) Extreme values in finance, telecommunications, and the environment. Chapman & Hall/CRC, Boca Raton, pp 79–100

    Google Scholar 

  • Coles SG, Dixon MJ (1999) Likelihood-based inference for extreme value models. Extremes 2(1):5–23

    Article  Google Scholar 

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J R Stat Soc Ser C 52(4):405–416

    Article  Google Scholar 

  • Coles SG, Tawn JA (1996) A Bayesian analysis of extreme rainfall data. J R Stat Soc Ser C 45(4):463–478

    Google Scholar 

  • Coles S, Tawn J (2005) Bayesian modelling of extreme surges on the UK east coast. Philos Trans R Soc A 363(1831):1387–1406

    Article  Google Scholar 

  • Coles S, Pericchi LR, Sisson S (2003) A fully probabilistic approach to extreme rainfall modeling. J Hydrol 273(1–4):35–50

    Article  Google Scholar 

  • Farquharson FAK, Meigh JR, Sutcliffe JV (1992) Regional flood frequency analysis in arid and semi-arid areas. J Hydrol 138(3–4):487–501

    Article  Google Scholar 

  • Fisher RA, Tippett LHC (1928) On the estimation of the frequency distributions of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, vol 2. Chapman & Hall, London

    Google Scholar 

  • Hosking JRM (1985) Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution. J R Stat Soc Ser C 34(3):301–310

    Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the Generalized Extreme-Value distribution by the method of probability-weighted moments. Technometrics 27(3):251–261

    Article  Google Scholar 

  • Huang W, Xu S, Nnaji S (2008) Evaluation of GEV model for frequency analysis of annual maximum water levels in the coast of United States. Ocean Eng 35(11–12):1132–1147

    Article  Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81:158–171

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287–1304

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol 211(1–4):69–85

    Article  Google Scholar 

  • Lee KS, Kim SU (2008) Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrol Process 22(12):1949–1964

    Article  Google Scholar 

  • Madsen H, Rosbjerg D (1997) Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling. Water Resour Res 33(4):771–781

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 1. At-site modeling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • Natural Environment Research Council (1975) Flood studies report, vol 1. NERC, London

    Google Scholar 

  • Park JS (2005) A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution. Math Comput Simul 70(4):227–234

    Article  Google Scholar 

  • Reis DS Jr, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313(1–2):97–116

    Google Scholar 

  • Renard B, Garretata V, Lang M (2006a) An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima. Water Resour Res 42:W12422. doi:10.1029/2005WR004591

    Article  Google Scholar 

  • Renard B, Lang M, Bois P (2006b) Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch Environ Res Risk Assess 21(2):97–122

    Article  Google Scholar 

  • Ribatet M, Sauquet E, Grésillon JM, Ouarda TBMJ (2007a) A regional Bayesian POT model for flood frequency analysis. Stoch Environ Res Risk Assess 21(4):327–339

    Article  Google Scholar 

  • Ribatet M, Sauquet E, Grésillon JM, Ouarda TBMJ (2007b) Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency analysis. Water Resour Res 43:W08403. doi:10.1029/2006WR005525

    Article  Google Scholar 

  • Siliverstovs B, Ötsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2009) Climate change and modelling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess. doi:10.1007/s00477-099-0321-3

  • Sisson SA, Pericchi LR, Coles SG (2006) A case for a reassessment of the risks of extreme hydrological hazards in the Caribbean. Stoch Environ Res Risk Assess 20(4):296–306

    Article  Google Scholar 

  • Smith TJ, Marshall LA (2008) Bayesian methods in hydrologic modeling: a study of recent advancements in Markov chain Monte Carlo techniques. Water Resour Res 44:W00B05. doi:10.1029/2007WR006705

  • Stephenson A, Tawn J (2004) Bayesian inference for extremes: accounting for the three extremal types. Extremes 7(4):291–307

    Article  Google Scholar 

  • Walshaw D (2000) Modelling extreme wind speeds in regions prone to hurricanes. J R Stat Soc Ser C 49(1):51–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonkyoo Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S., Cho, W., Heo, JH. et al. A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch Environ Res Risk Assess 24, 761–770 (2010). https://doi.org/10.1007/s00477-009-0362-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-009-0362-7

Keywords

Navigation