Skip to main content
Log in

Multi-spectral decomposition of functional autoregressive models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Functional data models provides a suitable framework for the statistical analysis of several environmental phenomena involving continuous time evolution and/or spatial variation. The functional autoregressive model of order p,  p ≥ 1, (FAR(p)) extends to the infinite-dimensional space context the classical autoregressive model AR(p) (see, for example, Mourid T (1993) Processus autorégressiifs d’ordre supérieur. Acad Sci t.317(Sér. I):1167–1172). In this paper, we derive a multidimensional diagonalization of the functional parameters (operators) involved in the FAR(p), p > 1, formulation. The functional state equation is then transformed into a discrete system of scalar state equations. The decomposition obtained is optimal regarding information on spatiotemporal interaction affecting the evolution of the spatial behavior of the process of interest. For functional prediction and filtering, we implement the Kalman filter equations from the diagonal version derived for FAR(p) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angulo JM, Ruiz-Medina MD, Anh VV (2000) Estimation and filtering of fractional generalized random fields. J Aust Math Soc A 69:1–26

    Article  Google Scholar 

  • Besse P, Cardot H, Stephenson D (2000) Autoregressive forecasting of some climatic variations. Scand J Stat 27:673–687

    Article  Google Scholar 

  • Bosq D (1991) Modelization, nonparametric estimation and prediction for continuous time processes. In: Roussas (Ed) Nato Asi Series C, 335 509–529

  • Bosq D (2000) Linear processes in function spaces. Springer, Berlin

    Google Scholar 

  • Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space–time models. J R Stat Soc B 62:847–860

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Da Prato G, Zabczyk J (2002) Second order partial differential equations in Hilbert spaces. London Mathematical Society Lecture Note Series 293. Cambridge University Press, London

  • Dabo-Nianga S, Ferraty F, Vieu P (2007) On the using of modal curves for radar waveforms classification. Comput Stat Data Anal 51:4878–4890

    Article  Google Scholar 

  • Damon J, Guillas S (2002) The inclusion of exogeneous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774

    Article  CAS  Google Scholar 

  • Dautray R, Lions JL (1992) Mathematical analysis and numerical methods for science and technology 3, spectral theory and applications. Springer, Berlin

    Google Scholar 

  • Erbas B, Hyndman RJ, Gertig DM (2007) Forecasting age-specific breast cancer mortality using functional data models. Stat Med 26:458–470

    Article  Google Scholar 

  • Mourid T (1993) Processus autorégressiifs d’ordre supérieur. Acad Sci t.317(Sér. I):1167–1172

    Google Scholar 

  • Pumo B (1999) Prediction of continuous time processes by \({{\mathcal{C}}}[0,1]\)-valued autoregressive process. Stat Infer Stoch Processes 3:1–13

    Google Scholar 

  • Ramm AG (1990) Random fields estimation theory. Longman, London

    Google Scholar 

  • Ruiz-Medina MD, Angulo JM (2002) Spatiotemporal filtering using wavelets. Stoch Environm Res Risk Assess 16:241–266

    Article  Google Scholar 

  • Ruiz-Medina MD, Salmerón R, Angulo JM (2007) Kalman filtering from POP-based diagonalization of ARH(1). Comput Stat Data Anal 51:4994–5008

    Article  Google Scholar 

  • Ruiz-Medina MD, Alonso FJ, Angulo JM, Bueso MC (2003) Functional stochastic modeling and prediction of spatio-temporal processes. J Geophys Res Atmos 108(D24):9003, doi:10.1029/2003JD003416

  • Ruiz-Medina MD, Angulo JM, Anh VV (2007) Multifractality in space–time statistical models. Stoch Environ Res Risk Assess. Special Issue on spatio-temporal modeling of environmental and health processes. doi:10.1007/s00477-007-0152-z

  • Triebel H (1978) Interpolation theory, function spaces, differential operators. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Wikle CK (2003) Spatio temporal methods in climatology. Encyclopedia of life support systems. EOLSS, Oxford

  • Wikle CK, Cressie N (1999) A dimension-reduction approach to space-time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

  • Zimmerman DL, Nunez-Anton V (2001) Parametric modelling of growth curve data: an overview. Test 26:1–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ruiz-Medina.

Additional information

This work has been supported in part by projects MTM2005-08597 of the DGI, MEC, and P05-FQM-00990, P06-FQM-02271 of the Andalousian CICE, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmerón, R., Ruiz-Medina, M.D. Multi-spectral decomposition of functional autoregressive models. Stoch Environ Res Risk Assess 23, 289–297 (2009). https://doi.org/10.1007/s00477-008-0213-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0213-y

Keywords

Navigation