Advertisement

Drought characterization: a probabilistic approach

  • A. K. Mishra
  • V. P. Singh
  • V. R. Desai
Original Paper

Abstract

Using the alternative renewable process and run theory, this study investigates the distribution of drought interval time, mean drought interarrival time, joint probability density function and transition probabilities of drought events in the Kansabati River basin in India. The standardized precipitation index series is employed in the investigation. The time interval of SPI is found to have a significant effect of the probabilistic characteristics of drought.

Keywords

Alternative renewal process Droughts Probability models Markov chains SPI JPDF Kansabati River basin 

References

  1. Bussay A, Szinell C, Szentimery T (1999) Investigations and measurements of droughts in Hungary. Hungarian Meterological Service, BudapestGoogle Scholar
  2. Chung CH, Salas JD (2000) Drought occurrence probabilities and risks of dependent hydrological processes. J Hydrol Eng ASCE 5(3):259–268CrossRefGoogle Scholar
  3. Dracup JA, Kendall DR (1990) Floods and droughts. In: Waggoner PE (eds) Climate change and US water resources. Wiley, New York, pp 243–267Google Scholar
  4. Dracup JA, Lee KS, Paulson EG (1980) On the statistical characteristics of drought events. Water Resour Res 16(2):289–296CrossRefGoogle Scholar
  5. Fernandez B, Salas JD (1999a) Return period and risk of hydrologic events. I: Mathematical formulation. J Hydrol Eng ASCE 4(4):297–307CrossRefGoogle Scholar
  6. Fernandez B, Salas JD (1999b) Return period and risk of hydrologic events. II: Applications. J Hydrol Eng ASCE 4(4):308–316CrossRefGoogle Scholar
  7. González J, Valdés JB (2003) Bivariate drought recurrence analysis using tree rings reconstructions. J Hydrol Eng ASCE 8(5):247–258CrossRefGoogle Scholar
  8. Guttman NB (1998) Comparing the palmer drought index and standardized precipitation index. J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  9. Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322CrossRefGoogle Scholar
  10. Haan CT (2002) Statistical methods in hydrology. The Iowa State University Press, Ames, p 496Google Scholar
  11. Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438CrossRefGoogle Scholar
  12. Hughes BL, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592CrossRefGoogle Scholar
  13. Kendel DR, Dracup JA (1992) On the generation of drought events using an alternating renewal-reward model. Stochast Hydro Hydr 6(1):55–68CrossRefGoogle Scholar
  14. Kim T, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng ASCE 8(5):237–246CrossRefGoogle Scholar
  15. Kim T, Valdés JB, Yoo C (2006) Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index. J Hydrol Eng ASCE 11(2):134–143CrossRefGoogle Scholar
  16. Lana X, Serra C, Burgueño A (1998) Spatial and temporal characterization ofannual extreme droughts in Catalonia (Northern Spain). Int J Climatol 18:93–110CrossRefGoogle Scholar
  17. Lana X, Serra C, Burgueño A (1998) Spatial and temporal characterization of annual extreme droughts in catalonia (Northern Spain). Int J Clim 18:93–110CrossRefGoogle Scholar
  18. Loaiciga HA, Leipnik RB (1996) Stochastic renewal model of low-flow stream sequences. Stochast Hydro Hydr 10(1):65–85CrossRefGoogle Scholar
  19. Mathier L, Perreault L, Ashkar F (1992) The use of geometric and gamma related distributions for frequency analysis of water deficit. Stochast Hydro Hydr 6(4):239–254CrossRefGoogle Scholar
  20. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, 8th conference on applied climatology, Anaheim, California, 17–22 January 1993, pp 179–184Google Scholar
  21. Medhi J (2002) Stochastic models in queueing theory, 2nd edn. Academic Press, New York, p 450, ISBN 0-12-487462-2Google Scholar
  22. Mishra AK, Desai VR (2005a) Spatial and temporal drought analysis in the Kansabati River Basin, India. Int J River Basin Manage IAHR 3(1):31–41Google Scholar
  23. Mishra AK, Desai VR (2005b) Drought forecasting using stochastic models. Stochast Environ Res Risk Assess 19:326–339CrossRefGoogle Scholar
  24. Mishra AK, Desai VR (2006c) Drought forecasting using feed-forward recursive neural network. Ecol model 198:127–138CrossRefGoogle Scholar
  25. Palmer WC (1965) Meteorological drought. Research paper no. 45, US Department of Commerce, Weather Bureau, Washington, DCGoogle Scholar
  26. Redmond KT (2000) Integrated climate monitoring for drought detection. In: Wilhite DA (eds) Drought: a global assessment. Routledge, pp 145–158Google Scholar
  27. Ross SM (2000) Introduction to probability models. Harcourt India Pvt. Ltd, New DelhiGoogle Scholar
  28. Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (eds) Handbook of hydrology, McGraw Hill, New York, pp 19.1–19.72Google Scholar
  29. Sen Z (1976) Wet and dry periods of annual flow series. J Hydrol Div ASCE 106(HY1):99–115Google Scholar
  30. Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage ASCE 127(1):30–40CrossRefGoogle Scholar
  31. Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (eds) Handbook of hydrology, McGraw Hill, New York, pp 18.1–18.66Google Scholar
  32. Steinemann A (2003) Drought indicators and triggers: a stochastic approach to evaluation. J Am Water Resour Assoc 39(5):1217–1233CrossRefGoogle Scholar
  33. Szalai S, Szinell C (2000). Comparison of two drought indices for drought monitoring in Hungary – a case study, In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe, Kluwer, Dordrecht, pp 161–166Google Scholar
  34. Wilhite DA, Rosenberg NJ, Glantz MH (1986) Improving federal response to drought. J Clim Appl Meteorol 25:332–342CrossRefGoogle Scholar
  35. Wolff RW (1989) Stochastic modeling and the theory of queues. Prentice-Hall Inc., Englewood CliffsGoogle Scholar
  36. Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic droughts. Hydrol. Papers 23, Colorado State University Publication, Colorado State University, Fort Collins, Colorado, USAGoogle Scholar
  37. Yue S (1999) Applying bivariate normal distribution to flood frequency analysis. Water Int IWRA 24(3):248–254CrossRefGoogle Scholar
  38. Zelenhastic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168CrossRefGoogle Scholar
  39. Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng ASCE 11(2):150–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Civil EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Department of Biological and Agricultural EngineeringTexas A and M UniversityCollege StationUSA
  3. 3.Department of Civil EngineeringIndian Institute of Technology-KharagpurWest BengalIndia

Personalised recommendations