Skip to main content

Advertisement

Log in

Towards generic real-time mapping algorithms for environmental monitoring and emergency detection

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Real-time analysis of data reported by environmental monitoring networks poses a number of challenges, one of which is the conversion of point measurements of phenomena that display some spatial dependence into maps. This is the case for the many variables that cannot be monitored efficiently over large regions by satellites. Environmental pollutants, radiation levels, rainfall fields and seismic activity are but a few of these variables that are usually interpolated for the production of maps. These maps will then further serve as an essential support for decision-making. Ideally, in order to allow real-time assessments and minimize human intervention in case of hazards and emergencies that are frequently linked to the above mentioned variables (e.g. air pollution peaks, nuclear accidents, flash-floods, earthquakes), these maps should be established in near real time and thus automatically. The ability of real-time mapping systems running in the routine mode to be able to cope with extreme events is not straightforward, and few systems are today used automatically for both monitoring the environment and triggering early warnings in case of necessity. Alternatively, adopting a decision-centered view of environmental monitoring and mapping systems allows us to re-formulate their final objective as a classification problem that consists of discriminating routine against emergency conditions, or background information against outliers. It is the purpose of this paper to give an overview of the main challenges for developing and evaluating automatic mapping systems for critical environmental variables, as well as to discuss steps toward the development of generic real-time mapping algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraham JS, Comrie AC (2004) Real-time ozone mapping using a regression-interpolation hybrid approach, applied to Tucson, Arizona. J Air Waste Manage Assoc 54(8):914–925

    CAS  Google Scholar 

  • AIRMARAIX (2004) Evaluation des outils de cartographie de la pollution par l’ozone dans les Bouches-du-Rhône, le Var et le Vaucluse. Published online, http://www.airmaraix.com/, 42 pp

  • Barry RP, ver Hoef JM (1996) Blackbox kriging: kriging without specifying variogram models. J Agric Biol Environ Stat 1(3):297–322

    Article  Google Scholar 

  • Bucher F, Včkovski A (1995) Improving the selection of appropriate spatial interpolation methods. In: Frank AU, Kuhn W (eds) Spatial information theory: a theoretical basis for GIS. Springer, New York, pp 351–364

    Google Scholar 

  • Cooper W, Jarvis C (2004) A Java-based intelligent advisor for selecting a context-appropriate spatial interpolation algorithm. Comput Geosci 30(9–10):1003–1018. doi:10.1016/j.cageo.2004.07.007

    Google Scholar 

  • Chawla S, Sun P (2005) SLOM: a new measure for local spatial outliers. Knowl Inform Syst 9(4):412–429. doi:10.1007/s10115-005-0200-2

    Article  Google Scholar 

  • Christakos G (1998) Spatiotemporal information systems in soil and environmental sciences. Geoderma 85(2–3):141–179. doi:10.1016/S0016-7061(98)00018-4

    Article  Google Scholar 

  • Cressie N (1990) The origin of kriging. Math Geol 22(3):239–252. doi:10.1007/BF00889887

    Article  Google Scholar 

  • D’Alimonte D, Cornford D (2007) Outlier detection with partial information: an application to SIC2004 data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0164-8

  • Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48

    Article  Google Scholar 

  • Elogne SM, Hristopulos ST, Varouchakis M (2007) An application of Spartan spatial random fields in environmental mapping: focus on automatic mapping capabilities. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0167-5

  • Englund EJ (1990) A variance of geostatisticians. Math Geol 22(4):417–455. doi:10.1007/BF00890328

    Article  Google Scholar 

  • EUR (2003) Mapping radioactivity in the environment. Spatial Interpolation Comparison 1997. In: Dubois G, Malczewski J, De Cort M (eds) EUR 20667 EN, EC. Office for Official Publications of the European Communities, Luxembourg, p 268

  • EUR (2005) Automatic mapping algorithms for routine and emergency monitoring data. Report on the Spatial Interpolation Comparison (SIC2004) exercise. In: Dubois G. (ed) EUR 21595 EN. Office for Official Publications of the European Communities, Luxembourg, 150 pp

  • Galmarini S (2005) Real-time geostatistics for atmospheric dispersion forecasting, and vice versa? In: Dubois G (ed) Automatic mapping algorithms for routine and emergency monitoring data. Report on the Spatial Interpolation Comparison (SIC2004) exercise. EUR 21595 EN. Office for Official Publications of the European Communities, Luxembourg, pp 139–148

    Google Scholar 

  • Genton MG, Furrer R (2003) Analysis of rainfall data by simple good sense: is spatial statistics worth the trouble? In: Dubois G, Malczewski J, de Cort M (eds) Mapping radioactivity in the environment. EUR 20667 EN. Office for Official Publications of the European Communities, Luxembourg, pp 45–50

    Google Scholar 

  • Girardi F, Graziani G, Van Velzen D, Galmarini S, Mosca S, Bianconi R, Bellasio R, Klug W, Fraser G (1998) The European tracer experiment. EUR 18143 EN. Office for Official Publications of the European Communities, Luxembourg, p 108

    Google Scholar 

  • Groat CG (2004) Seismographs, sensors, and satellites: better technology for safer communities. Technol Soc 26:169–179. doi:10.1016/j.techsoc.2004.01.012

    Article  Google Scholar 

  • Hand DJ (1997) Construction and assessment of classification rules. Wiley, Chichester

    Google Scholar 

  • Hergarten S (2004) Aspects of risk assessment in power-law distributed natural hazards. Nat Hazards Earth Syst Sci 4:309–313

    Article  Google Scholar 

  • Hinterding A, Streit U (2002) Automatic model selection for spatial interpolation. In: Proceedings of 8th annual conference of the international association for mathematical geology. Schriften der Alfred-Wegener-Stiftung, Terra Nostra 03/2002, pp 87–92

  • Hoffmann H (2002) Stochastisch-deterministische Modelle zur Analyse räumlicher und zeitlicher Ozonimmissionsstrukturen in Sachsen. Ph.D. thesis, TU Freiberg, Germany, 143 pp

  • Hurairah A, Ibrahim NA, Daud IB, Haron K (2005) An application of a new extreme value distribution to air pollution data. Manage Environ Qual 16(1):17–25. doi:10.1108/14777830510574317

    Article  Google Scholar 

  • Jarvis CH, Stuart N, Cooper W (2003) Infometric and statistical diagnostics to provide artificially-intelligent support for spatial analysis: the example of interpolation. Int J Geogr Inf Sci 17(6):495–516. doi:10.1080/1365881031000114099

    Article  Google Scholar 

  • Kanamori H (1993) Locating earthquakes with amplitude: application to real-time seismology. B Seismol Soc Am 83:264–268

    Google Scholar 

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14(8):799–810

    Article  CAS  Google Scholar 

  • Lam NS-N (1983) Spatial interpolation methods: a review. Am Cartogr 10:129–149

    Article  Google Scholar 

  • Mulugeta G (1996) Manual and automated interpolation of climatic and geomorphic statistical surfaces: an evaluation. Ann Assoc Am Geogr 86:324–342

    Article  Google Scholar 

  • Myers DE (1994) Spatial interpolation: an overview. Geoderma 62:17–28. doi:10.1016/0016-7061(94)90025-6

    Article  Google Scholar 

  • Myers DE (2005) Spatial Interpolation Comparison exercise 2004: a real problem or an academic exercise? In: Dubois G (eds) Automatic mapping algorithms for routine and emergency monitoring data. EUR 21595 EN. Office for Official Publications of the European Communities, Luxembourg, pp 79–88

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd P, Grimes DIF (2005) An automatic moving window approach for mapping meteorological data. Int J Climatol 25:665–678. doi:10.1002/joc.1128

    Article  Google Scholar 

  • Patil GP, Taillie C (2003) Geographic and network surveillance via scan statistics for critical area detection. Stat Sci 18(4):457–465

    Article  Google Scholar 

  • Patil GP, Bishop JA, Myers WL, Taillie C, Vraney R, Wardrop D (2004) Detection and delineation of critical areas using echelons and spatial scan statistics with synoptic cellular data. Environ Ecol Stat 11(2):139–164

    Article  Google Scholar 

  • Pilz J, Spöck G (2007) Why do we need and how should we implement Bayesian Kriging methods. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0165-7

  • Pozdnoukhov A, Kanevski M (2007) Multi-scale support vector algorithms for hot spot detection and modeling. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0162-x

  • Saito H, Goovaerts P (2000) Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site. Environ Sci Technol 34(19):4228–4235. doi:10.1021/es991450y

    Article  CAS  Google Scholar 

  • Shabestari KT, Yamazaki F, Saita J, Matsuoka M (2004) Estimation of the spatial distribution of ground motion parameters for two recent earthquakes in Japan. Tectonophysics 390:193–204

    Article  Google Scholar 

  • Sharma P, Khare M, Chakrabarti SP (1999) Application of extreme value theory for predicting violations of air quality standards for an urban road intersection. Transport Res Part D-Transport Environ 4(3):201–216

    Article  Google Scholar 

  • Shekhar S, Lu C, Zhang P (2003) A unified approach to detecting spatial outliers. Geoinformatica 7(2):117–137

    Article  Google Scholar 

  • Shekhar S, Zhang P, Huang Y, Vatsavai RR (2004) Trends in spatial data mining. In: Kargupta H, Joshi A, Sivakumar K (eds) Data mining: next generation challenges and future directions. AAAI Press, Menlo Park, pp 357–379

    Google Scholar 

  • Stanislawska I, Juchnikowski G, Cander LR, Ciraolo L, Bradley PA, Zbyszynski Z, Swiatek A (2002) The kriging method of TEC instantaneous mapping. Adv Space Res 29(6):945–948

    Article  Google Scholar 

  • Turley MDE, Gardiner-Garden RS (2006) Spatial and temporal ionospheric mapping with outlier and missing samples. In: Proceedings of the workshop on the applications of radio science conference 2006, Leura, NSW, Australia, 15–17 February 2006. Published online http://www.ips.gov.au/IPSHosted/NCRS/wars/wars2006/proceedings/final/g/turley.pdf

  • Van den Boogaart KG (2005) The comparison of one click mapping procedures for emergencies. In: Dubois G (ed) Automatic mapping algorithms for routine and emergency monitoring data. EUR 21595 EN. Office for Official Publications of the European Communities, Luxembourg, pp 71–78

    Google Scholar 

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H, Scrivner CW, Worden CB (1999) TriNet “ShakeMaps”: rapid generation of peak ground motion and intensity maps for earthquakes in southern California. Earthq Spectra 15(3):537–554. doi:10.1193/1.1586057

    Article  Google Scholar 

  • Wald DJ, Worden CB, Quitoriano V, Pankow KL (2005) ShakeMap manual: users guide, technical manual, and software guide. USGS techniques and methods 12–A1, 128 pp

  • Wong DW, Yuan L, Perlin SA (2004) Comparison of spatial interpolation methods for the estimation of air quality data. J Expo Anal Environ Epidemiol 14:404–415. doi:10.1038/SJ.JEA.7500338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially funded by the European Commission, under the Sixth Framework Programme, by the Contract N. 033811 with DG INFSO, action Line IST-2005-2.5.12 ICT for Environmental Risk Management. The views expressed herein are those of the authors and are not necessarily those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenning, A., Dubois, G. Towards generic real-time mapping algorithms for environmental monitoring and emergency detection. Stoch Environ Res Risk Assess 22, 601–611 (2008). https://doi.org/10.1007/s00477-007-0166-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0166-6

Keywords

Navigation