Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain

Original Paper

Abstract

In this study, we propose a methodology to analyse the gradual secular trends present in the time evolution of certain endogenous variables, which are of particular interest in environmental research. This methodology is based on modelling such variables by nonhomogeneous stochastic diffusion processes, the trend functions of which may be made to depend on other, exogenous, variables, which are controllable and which affect and model, in turn, the possible irregularities of such trends. The methodology is applied to analyse the evolution of the emission of CO2 in Spain, and it is shown that the evolution of the Spanish GDP affects the trend component. These circumstances are considered in the context of Spain’s non-compliance with the Kyoto protocol on controlling the emission of greenhouse gases.

Keywords

Non-homogeneous lognormal and Gompertz diffusion process Exogenous factors Trend functions Likelihood estimation in discrete sampling GDP and global CO2 emission 

References

  1. Albano G, Giorno V (2006) A stochastic model in tumor growth. J Theor Biol (in press) DOI 10.1016/j.jtbi.2006.03.001Google Scholar
  2. Andres RJ, Fielding DJ, Marland G, Boden TA, Kumar N (1999) Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus 51B:759–765CrossRefGoogle Scholar
  3. Boden TA, Marland G, Andres RJ (1995) Estimates of global, regional and national annual CO2 emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950–1992. ORNL/CDIAC-90,NDP-30/R6. Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  4. Ferrante L, Bompade S, Possati L, Leone L (2000) Parameter estimation in a Gompertzian stochastic-model for tumor growth. Biometrics 56:1076–1081CrossRefGoogle Scholar
  5. Ferrante L, Bompade S, Possati L, Leone L, Montanari MP (2005) A stochastic formulation of the Gompertzian growth model for in vitro bactericidad kinetics: parameter estimation and extinction probability. Biomet J 47,3:309–318CrossRefGoogle Scholar
  6. Giovanis AN, Skiadas CH (1999) A stochastic logistic innovation diffusion model for studying the electricity consumption in Greece and United States. Technol Forecast Soc Change 61:235–246CrossRefGoogle Scholar
  7. Gutiérrez-Sánchez R (2005) Stochastic diffusion Lognormal and Gompertz nonhomogeneous. Rayleigh Process. Applications. Ph.D thesis, University of GranadaGoogle Scholar
  8. Gutiérrez R, Angulo JM, González A, Pérez R (1991) Inference in lognormal multidimensional diffusion process with exogenous factors: application to modelling in economics. Appl Stoch Models Data Anal 7:295–316CrossRefGoogle Scholar
  9. Gutiérrez R, González A, Torres F (1997a) Estimation in multivariate lognormal diffusion process with exogenous factors. Appl Stat 46(1):140–146Google Scholar
  10. Gutiérrez R, Ricciardi L, Román P, Torres F (1997b) First-passage time densities for time-non-homogeneous diffusion processes. J Appl Prob 34(3):623–631CrossRefGoogle Scholar
  11. Gutiérrez R, Román P, Torres F (1999) Inference and first-passage-time for the lognormal diffusion process with exogenous factors: application to modelling in economics. Appl Stochast Models Bus Indus 15(4):325–332CrossRefGoogle Scholar
  12. Gutiérrez R, Román P, Torres F. (2001) Inference on some parametric functions in the univariate lognormal diffusion process with exogenous factors. Test 10(2):357–373CrossRefGoogle Scholar
  13. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2005a) Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model. Appl Energy 80(2):115–124CrossRefGoogle Scholar
  14. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2005b) The stochastic Brennan–Schwartz Diffusion Process: Statistical Inference and Applications. CIMMA: International Mediterranean Congress of Mathematics, 47–57, AlmeríaGoogle Scholar
  15. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A, Román P, Torres F (2005c) Inference in Gompertz type nonhomogeneous stochastic systems by means of discrete sampling. Cybern Syst 36:203–216CrossRefGoogle Scholar
  16. Gutiérrez R, Roldan C, Gutiérrez-Sánchez R, Angulo JM (2005d) Estimation and prediction of a 2D lognormal diffusion random field. Stochast Environ Res Risk Assess 19(4):258–265CrossRefGoogle Scholar
  17. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2006a) Electricity consumption in Morocco: stochastic Gompertz diffusion analysis with exogenous factors. Appl Energy 83:1139–1151CrossRefGoogle Scholar
  18. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2006b) The Stochastic Rayleigh diffusion model: Statistical inference and computational aspects. Applications to modelling of real cases. Appl Math Comput 175:628–644CrossRefGoogle Scholar
  19. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A, Ramos E (2006c) A diffusion model with cubic drift: statistical and computational aspects and application to modelling the global CO2 emission in Spain. Environmetrics (in press) DOI 10.1002/env.801Google Scholar
  20. Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A, Ramos E (2006d) Threshold parameter in stochastic Gompertzian process: computational inference and application in modelling. Appl Math Comput (in press) DOI 10.1016/j.amc.2006.05.099Google Scholar
  21. Liptser RS, Shiryayev AN (1977) Statistics of random processess I. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Marland G, Boden TA, Andres RJ (2005) Global, regional, and national fossil fuel CO2 emissions. In trends: a compendium of data on global change. Carbon dioxide information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  23. McCuen R (2003) Modelling hydrologic change. Statistical methods. Lewis, Boca RatonGoogle Scholar
  24. Meade N, Islam T (2006) Modelling and forecasting the diffudion of innovation. A 25-years review. International Int J Forecast 22(3):519–545CrossRefGoogle Scholar
  25. Nafidi A (1997) Lognormal diffusion process with exogenous factors, Extensions from the Gompertz diffusion process. Ph.D thesis, University of GranadaGoogle Scholar
  26. Ramanathan R (2006) A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol Forecast Soc Change (in press) DOI 10.1016/j.techfore. 2005.06.012Google Scholar
  27. Wong E, Hajek B (1985) Stochastic processes in engineering systems. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. Gutiérrez
    • 1
  • R. Gutiérrez-Sánchez
    • 1
  • A. Nafidi
    • 1
  1. 1.Department of Statistics and Operations Research, Facultad de CienciasUniversity of GranadaGranadaSpain

Personalised recommendations