Skip to main content
Log in

Clone differences among young Salix humboldtiana Willd. from Patagonia

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

When growing under similar conditions, Salix humboldtiana plants exhibit intra- and inter-clone variations in growth and branching traits, despite sharing an acrotonic branching pattern.

Abstract

Willows represent some of the most extended tree crop species worldwide. Understanding their global architecture could help improving the forestry based on these species and thus the associated economic activities. Our goal was to compare growth and branching traits among clones of Salix humboldtiana, the only willow native to South America. We registered the length, diameter, number of branches, branching range and the number of growth units of the vertical shoot formed by plants derived from nine clones of three Patagonian provenances of S. humboldtiana. Budbreak patterns at each node of that shoot were also analyzed. Length and number of branches were the most variable among clones, while diameter and branching range were the least variable shoot traits. The clones with the highest proportion of unbranched individuals tended to have the lowest proportion of shoots with two growth units. The probability of budbreak decreased as the distance between a bud and the shoot apex increased (acrotonic branching pattern). Our study shows that the length and the number of branches of the main axis growth unit would be key traits for clone selection, as they seem to have a high degree of endogenous determination. These traits are important aspects of the whole plant’s architecture that can be used for designing, for example, agroforestry systems when it comes to clone or even species combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Notes

  1. Reiteration: process by which a plant duplicates its elemental architecture (Barthélémy and Caraglio 2007).

References

  • Alméras T, Gril J, Costes E (2002) Bending of apricot tree branches under the weight of axillary growth: test of a mechanical model with experimental data. Trees 16:5–15

    Article  Google Scholar 

  • Amichev BY, Hangs RD, Konecsni SM, Stadnyk CN, Volk TA, Bélanger N, Vujanovic V, Schoenau JJ, Moukoumi J, Van Rees KCJ (2014) Willow short-rotation production systems in Canada and North United States: a review. Soil Sci Soc Am J 78:S168–S182. https://doi.org/10.2136/sssaj2013.08.0368nafsc

    Article  Google Scholar 

  • Aradóttir AL, Svavarsdóttir K, Bau A (2007) Clonal variability of native willows (Salix pylicifolia and Salix lanata) in Iceland and implications for use in restoration. Icel Agric Sci 20:61–72

    Google Scholar 

  • Atencia M (2003) Densidad de maderas (kg/m3) ordenadas por nombre común. Instituto Nacional de Tecnología Industrial. INTI – CITEMA. https://www.inti.gob.ar/areas/servicios-industriales/servicios-sectoriales/madera-y-muebles/publicaciones. Consulted 17 Aug 2022

  • Baar F (2005) Vers la récolte annuelle ciblée de quelques arbres-objectif de très haute qualité pour assurer les recettes forestières. Forets Wallonne 77:19–36

    Google Scholar 

  • Baker ML (2009) The willows (Salix – Salicaceae) in Tasmania. Muelleria 27(2):127–148

    Article  Google Scholar 

  • Barbeau CD, Wilton MJ, Oelbermann M, Karagatzides JD, Tsuji LJS (2017) Local food production in a subartic indigenous community: the use of willow (Salix spp.) windbreaks to increase the yield of intercropped potatoes (Solanum tuberosum) and bush beans (Phaseolus vulgaris). Int J Agric Sustain 16(1):29–39. https://doi.org/10.1080/14735903.2017.1400713

    Article  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99(3):375–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using eigen and S4. R package version 1.1-10. http://CRAN.R-project.org/package=lme4

  • Bell A (1991) Plant form an illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Bianchi S, Huuskonen S, Siipilehto J, Hynynen J (2020) Differences in tree growth of Norway spruce under rotation forestry and continuous cover forestry. For Ecol Manag 458:117689. https://doi.org/10.1016/j.foreco.2019.117689

    Article  Google Scholar 

  • Bolker B (2009) Learning hierarchical models: advice for the rest of us. Ecol Appl 19(3):588–592

    Article  PubMed  Google Scholar 

  • Bonnin SM, Faustino LI, Álvarez JA, Graciano C (2020) ¿La combinación de clones posee alguna ventaja sobre los sistemas monoclonales? Posibles alternativas silviculturales para las Salicáceas, a partir de la revisión de experiencias previas. Revista De La Facultad De Agronomía, La Plata 119(2):1–11

    Google Scholar 

  • Broeckx LS, Verlinden MS, Vangronsveld J, Ceulemans R (2012) Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation. Tree Physiol 32(10):1214–1226

    Article  CAS  PubMed  Google Scholar 

  • Burk TE, Nelson ND, Isebrands JG (1983) Crown architecture of short-rotation, intensively cultured Populus. III. A model of first-order branch architecture. Can J for Res 13(6):1107–1116. https://doi.org/10.1139/x83-148

    Article  Google Scholar 

  • Cerrillo T, Iribarren R, Cobas AC, Monteoliva S (2016) Evaluación xilológica de familias mejoradas de sauces con destino industrial maderero. Rev Fac Agron 115(1):99–106

    Google Scholar 

  • Ceulemans R, Stettler F, Hinckley TM, Isebrands JG, Heilman PE (1990) Crown architecture of Populus clones as determined by branch orientation and branch characteristics. Tree Physiol 7:157–167

    Article  PubMed  Google Scholar 

  • Cline MG, Harrington CA (2007) Apical dominance and apical control in multiple flushing of temperate woody species. Can J for Res 37:74–83

    Article  Google Scholar 

  • Correa MN (1984) Flora Patagónica. Parte IV a. Dicotiledóneas dialipétalas (Salicaceae a Cruciferae). Colección Científica del INTA. Buenos Aires

  • Dickmann DI, Kuzovkina J (2014) Poplars and willows of the world, with emphasis on silviculturally important species. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. CAB International and FAO, Rome, p 634

    Google Scholar 

  • Dorn RD (1976) A synopsis of American Salix. Can J Bot 54:2769–2789

    Article  Google Scholar 

  • Douhovnikoff V, Dodd RS (2003) Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet 106:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Elferjani R, Desrochers A, Tremblay F (2014) Effects of mixing clones on hybrid poplar productivity, photosynthesis and root development in northeastern Canadian plantations. For Ecol Manag 327:157–166

    Article  Google Scholar 

  • Gallo L, Martinez A, Bozzi J, Amico I, Hansen M (2016) Hacia el rescate genético del sauce criollo (Salix humboldtiana). Programa para su conservación y la restauración de ecosistemas ribereños patagónicos. PRESENCIA. N 66. ISSN 0326-7040

  • Gallo LA, Amico I, Bozzi J, Cedres Gazo M, Cerrillo T, Datri L, Hansen M, Leyer I, López H, Marchelli P, Martínez A, Mikuc JP, Orellana I, Pomponio F, Puntieri J, Salgado M, Torales S, Vincon S, Ziegenhagen B (2020) Salix humboldtiana: a very ancient willow and the only native to Argentina. In: Marchelli P, Patorino MJ (eds) Low intensity breeding of native forest trees in Argentina. Genetic basis for their domestication and conservation. Springer, Berlin, pp 192–216

    Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremed 1(2):115–123

    Article  CAS  Google Scholar 

  • Hernández-Leal MS, Suárez-Atillano M, Piñeiro D, González-Rodríguez A (2019) Regional patterns of genetic structure and environmental differentiation in willow populations (Salix humboldtiana Willd.) from Central Mexico. Ecol Evol 9:9564–9579

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165

    Article  PubMed  Google Scholar 

  • Lacabana, M. (Comp.) (2019). Economía y ambiente: el subsistema celulosa-papel en la Argentina. Universidad Nacional de Quilmes, Unidad de Publicaciones del Departamento de Economía y Administración, Bernal. Disponible en RIDAA-UNQ Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes. http://ridaa.unq.edu.ar/handle/20.500.11807/2342

  • Lawton RO (1982) Wind stress and elfin stature in a montane rain forest tree: and adaptive explanation. Am J Bot 69(8):1224–1230

    Article  Google Scholar 

  • Monteoliva S, Senisterra G, Marlats R (2005) Variation of wood density and fibre length in six willow clones (Salix spp.). IAWA 26(2):197–202

    Article  Google Scholar 

  • Morello J, Matteucci SD, Rodriguez AF, Silva ME, Mesopotámica P, Llana P (2012) Ecorregiones y complejos Ecosistémicos de Argentina. Orientación Gráfica Editora, Buenos Aires

    Google Scholar 

  • Myers-Smith IH, Hik DS, Kennedy C, Cooley D, Johnstone JF, Kenney AJ, Krebs CJ (2011) Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 40:610–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajunen AM, Oksanen J, Virtanen R (2011) Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J Veg Sci 22:837–846

    Article  Google Scholar 

  • Parolin P, Oliveira AC, Piedade MTF, Wittmann F, Junk WJ (2002) Pioneer trees in Amazonian floodplains: three key species form monospecific stands in different habitats. Folia Geobot 37:225–238

    Article  Google Scholar 

  • Pedrozo FL, Díaz MM, Temporetti PF, Baffico GD, Beamud G (2010) Características limnológicas de un sistema ácido: Río Agrio-Lago Caviahue, Provincia del Neuquén, Argentina. Ecol Austral 20:173–184

    Google Scholar 

  • Puntieri J, Varela SA, Torres C, Schinelli Casares T (2013) Antecedentes, cuidados y control de la calidad de árboles nativos en función de una buena producción. In: Varela SA, Aparicio A (eds) Serie técnica “Sistemas Forestales Integrados.” INTA, Buenos Aires

    Google Scholar 

  • Raven JA (1992) The physiology of Salix. Proc R Soc Edinb 98B:49–62

    Google Scholar 

  • R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Remphrey WR, Pearn LP (2006) Crown architecture development in Salix ‘Prairie Cascade’, a pendulous willow. Can J Bot 84:1531–1541

    Article  Google Scholar 

  • Salgado M, Gallo LA, Torres CD, Stecconi M, Puntieri JG (2021) Variations in growth and architecture in the range limit of Salix humboldtiana, the willow native to South America. Botany 99(11):713–723. https://doi.org/10.1139/cjb-2021-0017

    Article  CAS  Google Scholar 

  • San Martín J, Véliz V (2006) Salix humboldtiana Willd. Sauce chileno. Familia Salicaceae. En: Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Claudio Donoso Zegers (Ed). Marisa Cuneo Ediciones. Valdivia, Chile, pp 556–560

  • Saska M, Kuzovkina YA (2010) Phenological stages of willow (Salix). Ann Appl Biol 156:431–437. https://doi.org/10.1111/j.1744-7348.2010.00400.x

    Article  Google Scholar 

  • Thomas ER, Rodríguez AB (2014) Barreras rompevientos con álamos y sauces. Instituto Nacional de Tecnología Agropecuaria

  • Thomas LK, Tölle L, Ziegenhagen B, Leyer I (2012) Are vegetative reproduction capacities the cause of widespread invasion of Eurasian Salicaceae in Patagonian river landscapes? PLoS ONE 7(12):e50652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas LK, Leyer I (2014) Age structure, growth performance and composition of native and invasive Salicaceae in Patagonia. Plant Ecol 215:1047–1056

    Article  Google Scholar 

  • Van de Peer T, Verheyen K, Kint V, Van Cleemput E, Muys B (2017) Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. For Ecol Manag 385:1–9

    Article  Google Scholar 

  • Wareing PF, Nasr TAA (1961) Gravimorphism in trees. 1. Effect of gravity on growth and apical dominance in fruit trees. Ann Bot 25:321–340

    Article  Google Scholar 

  • Wilson BF (2000) Apical control of branch growth and angle in woody plants. Am J Bot 87(5):601–607. https://doi.org/10.2307/2656846

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ivon Pelliza and Melina Zuliani for their assistance on data collection.

Funding

This work was supported by Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Salgado.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by A. DesRochers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, M., Gallo, L.A., Torres, C.D. et al. Clone differences among young Salix humboldtiana Willd. from Patagonia. Trees 37, 1717–1725 (2023). https://doi.org/10.1007/s00468-023-02454-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-023-02454-w

Keywords

Navigation