Skip to main content

Advertisement

Log in

Combined effects of tree size and tapping techniques on resin production of Boswellia dalzielii Hutch., an African frankincense tree

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Slant incisure tapping yielded the highest resin production. Resin production was proportional to tree size, tapping intensity, and frequency. Resin production was higher during hot dry season than cold dry season.

Abstract

Boswellia dalzielii Hutch. is an African frankincense tree species with high medicinal and economic values mostly derived from its resin. In Burkina Faso, it has potentials to be the source of significant income for local communities, but it is currently neglected and underutilized. This study aims to assess the species resin production in relationship to tree size, tapping technique, season, intensity, and frequency of harvesting in natural stands of Sudano-Sahelian zone of Burkina Faso. Two independent experiments were conducted on resin yield: (i) experiment 1 combined the tapping technique (six techniques) and tree stem-diameter (10–20 vs. 20–30 cm) using 120 trees; (ii) experiment 2 used the slant incisure tapping technique (best from the first experiment) and combined five tapping intensities (number of grooves: 2, 4, 6, 8 and 10), period of tapping (cold vs. hot dry season), and tree stem-diameter (10–20, 20–30, and > 30 cm), using 90 trees. For each experiment, resin production was collected every 2 weeks for 12 weeks. Analysis of variance and linear mixed model on longitudinal data were used for data analyses. All trees had exudated resin and the average resin yield per tree was 36.28 ± 8.62 g (experiment 1) and 40.43 ± 3.82 g (experiment 2). Tapping techniques and intensity, and tree stem-diameter had significant (P < 0.001) effect on resin yield. Slant incisure tapping yielded the highest resin production, followed by tapping in E-shape cut, V-shape cut and circular tape (intermediate yield production), whereas thin deep vertical incisure and node tape gave the lowest resin production. Larger trees exuded higher quantity of resin. Higher tapping intensity and frequency (wound renewal) also gave higher resin production. Trees tapped during hot dry season produced 1.23 times higher quantity of resin (44.58 ± 7.51 g) than in cold dry season. The findings of this research could help design better harvesting strategies for the sustainable management of B. dalzielii resources in West Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the authors upon request.

Code availability

Not applicable.

References

  • Abiyu A, Bongers F, Eshete A, Gebrehiwot K, Kindu M, Lemenih M, Moges Y, Ogbazghi W, Sterck FJ (2010) Incense woodlands in Ethiopia and Eritrea: regeneration problems and restoration possibilities. In: Bongers F, Tennigkeit T (eds) Degraded forests in Eastern Africa: management and restoration. Earthscan Ltd., London, pp 123–132

    Google Scholar 

  • Arbonnier M (2019) Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest. Versailles, France, Éditions Quæ

  • Atmadja S, Esthete A, Boissière M (2019) Guidelines on sustainable forest management in drylands of Ethiopia

  • Barton K (2022) MuMIn: Multi-ModelInference. R package version 1(46). https://CRAN.R-project.org/package=MuMIn.

  • Bongers F, Groenendijk P, Bekele T, Birhane E, Damtew A, Decuyper M, Zuidema PA (2019) Frankincense in peril. Nat Sustain 2(7):602–610. https://doi.org/10.1038/s41893-019-0322-2

    Article  Google Scholar 

  • Cherenet E, Abiyu A, Getnet A, Sisay K, Dejene T (2020) Tapping height and season affect frankincense yield and wound recovery of Boswellia papyrifera trees. J Arid Environ 179:104176. https://doi.org/10.1016/j.jaridenv.2020.104176

    Article  Google Scholar 

  • DeCarlo A, Johnson S, Ouédraogo A, Dosoky NS, Setzer WN (2019) Chemical Composition of the Oleogum Resin Essential Oils of Boswellia dalzielii from Burkina Faso. Plants 8:223. https://doi.org/10.3390/plants8070223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeCarlo A, Ali S, Ceroni M (2020) Ecological and economic sustainability of non-timber forest products in post-conflict recovery: a case study of the Frankincense (Boswellia spp.) Resin Harvesting in Somaliland (Somalia). Sustainability 12(9):3578. https://doi.org/10.3390/su12093578

    Article  Google Scholar 

  • Eshete A, Sterck FJ, Bongers F (2012a) Frankincense production is determined by tree size and tapping frequency and intensity. For Ecol Manage 274:136–142. https://doi.org/10.1016/j.foreco.2012.02.024

    Article  Google Scholar 

  • Eshete A, Teketay D, Lemenih M, Bongers F (2012b) Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. Seeds from Metema District, northwestern Ethiopia. For Ecol Manage 269:31–36. https://doi.org/10.1016/j.foreco.2011.12.049

    Article  Google Scholar 

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35(3):289–304. https://doi.org/10.1093/treephys/tpv011

    Article  PubMed  Google Scholar 

  • Fritsche U, Rösch C (2020) The conditions of a sustainable bioeconomy. Bioeconomy for beginners. Springer, Berlin, pp 177–202. https://doi.org/10.1007/978-3-662-60390-19

    Chapter  Google Scholar 

  • Ghanbari S, Vaezin SMH, Shamekhi T, Eastin IL, Lovrić N, Aghai MM (2020) The economic and biological benefits of non-wood forest products to local communities in Iran. Econ Bot 74(1):59–73. https://doi.org/10.1007/s12231-019-09478-9

    Article  CAS  Google Scholar 

  • Gogoi B, Nath T, Kashyap D, Sarma S, Kalita R (2020) Sustainable agriculture, forestry and fishery for bioeconomy. Curr Dev Biotechnol Bioeng. https://doi.org/10.1016/B978-0-444-64309-4.00015-5

    Article  Google Scholar 

  • Gomez JB (1983) Physiology of Latex (Rubber) Production. Malaysia Rubber Research and Development Board, Kuala Lumpur

    Google Scholar 

  • Groom (1981) Frankincense and myrrh: a study of the Arabian incense trade. Longman, London, p 285

    Google Scholar 

  • Hood S, Sala A (2015) Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol 35(11):1223–1235. https://doi.org/10.1093/treephys/tpv098

    Article  PubMed  Google Scholar 

  • IFN 2 (2020) Second inventaire forestier national, Ministère de l’Environnement, de l’Economie verte et du changement climatique

  • Kémeuzé VA, Mapongmetsem PM, Tientcheu MA, Nkongmeneck BA, Jiofack RB (2012) Boswellia dalzielii Hutch.: état du peuplement et utilisation traditionnelle dans la région de Mbé (Adamaoua-Cameroun). Science Et Changements Planétaires/Sécheresse 23(4):278–283. https://doi.org/10.1684/sec.2012.0365

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lenth RV (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.3. https://CRAN.R-project.org/package=emmeans

  • Long JD (2012) Longitudinal data analysis for the behavioral sciences using R. Sage, New York

    Google Scholar 

  • Menger D (2010) Resin producing structures in Boswellia papyrifera and the anatomical response on tapping for frankincense. MSc thesis, Wageningen University, Wageningen

  • Mengistu T, Sterck FJ, Anten NP, Bongers F (2012) Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees. For Ecol Manage 278:1–8

    Article  Google Scholar 

  • Mengistu T, Sterck FJ, Fetene M, Bongers F (2013) Frankincense tapping reduces the carbohydrate storage of Boswellia trees. Tree Physiol 33(6):601–608

    Article  CAS  PubMed  Google Scholar 

  • Mishra SP, Paramanik T, Behera N, Pradhan A (2016) Sustainable harvest of gum from three important medicinal plants of Odisha. In: Conservation, cultivation, diseases and therapeutic importance of medicinal and aromatic plants, pp 121–136

  • Muir G (2021) The role of non-wood forest products in diets and livelihoods: quantifying the contributions. http://paduaresearch.cab.unipd.it/13260/

  • MuMIn, B. K. (2018). multi-model inference. R package version 1.15. 6. 2016.

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Negussie A, Gebrehiwot K, Yohannes M, Norgrove L, Aynekulu E (2021) Continuous resin tapping for frankincense harvest increases susceptibility of Boswellia papyrifera (Del.) Hochst trees to longhorn beetle damage. Heliyon 7(2):e06250. https://doi.org/10.1016/j.heliyon.2021.e06250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neis FA, de Costa F, Füller TN, de Lima JC, da Silva Rodrigues-Corrêa KC, Fett JP, Fett-Neto AG (2018) Biomass yield of resin in adult Pinus elliottii Engelm. trees is differentially regulated by environmental factors and biochemical effectors. Ind Crops Prod 118:20–25. https://doi.org/10.1016/j.indcrop.2018.03.027

    Article  CAS  Google Scholar 

  • Ngaryo FT, Goudiaby VA, Dagbenonbakin GD, Agbangba EC, Diatta S, Akpo LE (2011) Modeling the production of Arabic gum (Acacia senegal (L.) Willd) based on the proper tapping characteristics in the semi-arid Sahel of Chad. Int J Sci Adv Technol 1(8):24–30

    Google Scholar 

  • Novick KA, Katul GG, McCarthy HR, Oren R (2012) Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol 32(6):752–763. https://doi.org/10.1093/treephys/tpr133

    Article  CAS  PubMed  Google Scholar 

  • Ogbazghi W (2001) The distribution and regeneration of Boswellia papyrifera (Del.) Hochst. in Eritrea. https://library.wur.nl/WebQuery/wurpubs/122334

  • Ouédraogo A, Thiombiano A, Hahn-Hadjali K, Guinko S (2006) Diagnostic de l’état de dégradation des peuplements de quatre espèces ligneuses en zone soudanienne du Burkina Faso. Science Et Changements Planétaires/Sécheresse 17(4):485–491. https://doi.org/10.19182/bft2006.289.a20307

    Article  Google Scholar 

  • Pichersky E, Raguso RA (2018) Why do plants produce so many terpenoid compounds? New Phytologist 220(3):692–702. https://doi.org/10.1111/nph.14178.

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3(1). http://cran.rapporter.net/web/packages/nlme/nlme.pdf

  • Plan Communal de Développement actualisé de la commune rurale de Niou (2013) Horizon 2014–2018

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rijkers T, Ogbazghi W, Wessel M, Bongers F (2006) The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol 43(6):1188–1195. https://doi.org/10.1111/j.1365-2664.2006.01215.x

    Article  Google Scholar 

  • Rodríguez-García A, López R, Martín JA, Pinillos F, Gil L (2014) Resin yield in Pinus pinaster is related to tree dendrometry, stand density and tapping-induced systemic changes in xylem anatomy. For Ecol Manage 313:47–54. https://doi.org/10.1016/j.foreco.2013.10.038

    Article  Google Scholar 

  • Rodríguez-García A, Martín JA, López R, Sanz A, Gil L (2016) Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Ind Crops Prod 86:143–154. https://doi.org/10.1016/j.indcrop.2016.03.033

    Article  CAS  Google Scholar 

  • Sabo P, Ouédraogo A, Gbemavo DSJC, Salako KV, GlèlèKakaï R (2021) Land use impacts on growth, stand structure and regeneration of Boswellia dalzielii Hutch. an African frankincense tree in the Sudano-Sahelian region of Burkina Faso. Bois et Forêts des Tropiques. https://doi.org/10.19182/bft2021.349

    Article  Google Scholar 

  • Sabo P (2019) Sociocultural importance, stand structure and vulnerability of Boswellia dalzielii Hutch. in the Boucle du Mouhoun region (Burkina Faso). Dissertation for MSc. degree in Environment management, Faculty of Agronomic Sciences, University of Abomey-Calavi, Republic of Benin. http://www.sciencedev.net/Docs/SABO_Dissertation.pdf

  • Sainoi T, Sdoodee S, Lacote R, Gohet E (2017) Low frequency tapping systems applied to young-tapped trees of Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. in Southern Thailand. Agric Nat Resour 51(4):268–272. https://doi.org/10.1016/j.anres.2017.03.001

    Article  Google Scholar 

  • Schmiech M, Lang SJ, Werner K, Rashan LJ, Syrovets T, Simmet T (2019) Comparative analysis of pentacyclic triterpenic acid compositions in oleogum resins of different Boswellia species and their in vitro cytotoxicity against treatment-resistant human breast cancer cells. Mol 24(11). https://doi.org/10.3390/molecules:24112153.

  • Singh AL (2017) Effect of girth class, injury and seasons on ethephon induced gum exudation in Acacia nilotica (L.) Willd. in Chhattisgarh. Indian J Agroforestry 19(1), 36–41. https://agris.fao.org/agris-search/search.do?recordID=IN2022001091

  • Sinha SK, Pathak JG, Mehta AA, Behera LK (2016) Tapping methods in Salai guggal (Boswellia serrata roxb.) for sustainable yield of oleo-gum resin: a case study. Int J Usuf Mngt 17(2):13–18

    Google Scholar 

  • Soumya KV, Shackleton CM, Setty SR (2019) Impacts of gum-resin harvest and Lantana camara invasion on the population structure and dynamics of Boswellia serrata in the Western Ghats. India for Ecol Manag. https://doi.org/10.1016/j.foreco.2019.117618

    Article  Google Scholar 

  • Tadese S, Lemenih M, Zewdie M (2012) Effect of Tapping Intensity and Tree Diameter on Gum Arabic Yield of Acacia Senegal (L) Wild in Southern Ethiopia. For For Products Ethiopia 114

  • Thulin M (2020) The Genus Boswellia (Burseraceae): the Frankincense Trees. Acta Universitatis Uppsaliensis, Uppsala (ISBN 978-91-513-0886-9)

    Google Scholar 

  • Tilahun M, Muys B, Mathijs E, Kleinn C, Olschewski R, Gebrehiwot K (2011) Frankincense yield assessment and modeling in closed and grazed Boswellia papyrifera woodlands of Tigray, Northern Ethiopia. J Arid Environ 75(8):695–702. https://doi.org/10.1016/j.jaridenv.2011.03.005

    Article  Google Scholar 

  • Tolera M, Menger D, Sass-Klaassen U, Sterck FJ, Copini P, Bongers F (2013) Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann Bot 111(1):61–68. https://doi.org/10.1093/aob/mcs236

    Article  PubMed  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Biol 52:689–724

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York (ISBN 0-387-95457-0)

    Book  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Pearson Education, India

    Google Scholar 

  • Zas R, Quiroga R, Touza R, Vázquez-González C, Sampedro L, Lema M (2020) Resin tapping potential of Atlantic maritime pine forests depends on tree age and timing of tapping. Ind Crops Prod 157:112940. https://doi.org/10.1016/j.indcrop.2020.112940

    Article  CAS  Google Scholar 

  • Zavala JA, Ravetta DA (2001) The effect of irrigation regime on biomass and resin production in Grindelia chiloensis. Field Crop Res 69(3):227–236. https://doi.org/10.1016/S0378-4290(00)00146-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank and acknowledge the population and foresters of Niou village for accepting experience achievement on their lands and for their assistance. SKV was supported by the Climate Research for Alumni and Postdocs in Africa, 2021 (57560641) (Personal ref. no.: 91816591) which enabled fruitful collaboration.

Funding

This study was funded by the Aromatic Plants Research Center (APRC) and Mr Traoré Roland.

Author information

Authors and Affiliations

Authors

Contributions

Writing—revision and editing: SP, SKV, GKR, OA. Conceptualization: SP, OA. Data analysis: SP, SKV. Investigation and enquiry: SP. Methods: SP, SKV, GKR, OA. Funding: OA. Supervisors: OA, GKR. Validation: OA, GKR. Writing—preparation of the original draft: SP, SKV.

Corresponding author

Correspondence to Prospère Sabo.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest/competing interest.

Additional information

Communicated by Gaertner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabo, P., Salako, K., Glèlè Kakaï, R. et al. Combined effects of tree size and tapping techniques on resin production of Boswellia dalzielii Hutch., an African frankincense tree. Trees 36, 1697–1710 (2022). https://doi.org/10.1007/s00468-022-02320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-022-02320-1

Keywords

Navigation