Skip to main content

Advertisement

Log in

Afforestation suitability and production potential of five tree species on abandoned farmland in response to climate change, Czech Republic

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Keymessage

Populus nigra and Picea abies achieved the largest standing volume at 50 years of age in basalt mountainous sites in Central Europe, but they also present the highest risk in the case of rising temperature and drought extremes. The most climatically resistant tree species were Larix decidua and Alnus glutinosa , which had a lower productivity in the current conditions.

Based on carbon sequestration, growth, and damage rate, a revision of selected tree species capable of fulfilling production and non-production functions of the forest in the setting of global climate change was performed. Stands of Norway spruce, European larch, sycamore maple, black alder, and black poplar on abandoned farmland in the Doupovské hory Mts., Czech Republic, were analyzed. At about 52 years of age, spruce had the significantly highest average stand volume (417 m3 ha−1), while the highest carbon sequestration in tree biomass was found in poplar (169 t ha−1). On the contrary, maple showed the lowest average stand volume (183 m3 ha−1) and the amount of carbon (90 t ha−1). While maple radial increment was mostly negatively influenced by precipitation, the growth of spruce and poplar generally correlated positively (r = 0.26–0.33) with precipitation. For other tree species, the correlation was non-significant. Alder and larch were the most robust to climate factors, while the most climate-sensitive tree species was maple in relation to radial growth. The lowest tree damage was observed in alder (8% trees of the same species were damaged) and maple (9%). Larch (36%) and poplar (51%) differed from the previous two, due to many breaks, while the most damage was confirmed in spruce (74%) because of bark stripping and rot. The establishment of mixed stands of spruce with larch and maple may be regarded as a climate-smart silvicultural approach with clear environmental and economic benefits. On sites with high groundwater levels, poplar and alder represent a feasible alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manag 88(1–2):43–53. https://doi.org/10.1016/S0378-1127(96)03808-X

    Article  Google Scholar 

  • Anděl J (1998) Statistické metody. Matfyzpress, Praha, Czech Republic

    Google Scholar 

  • Andreassen K, Solberg S, Tveito OE, Lystad SL (2006) Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For Ecol Manag 222:211–221. https://doi.org/10.1016/j.foreco.2005.10.029

    Article  Google Scholar 

  • Barka I, Priwitzer T, Pavlenda P (2020) Carbon sequestration in living biomass of Slovak forests: recent trends and future projection. Cent Eur for J 66:191–201. https://doi.org/10.2478/forj-2020-0020

    Article  Google Scholar 

  • Bartoš J, Kacálek D (2011) Produkce mladých porostů první generace lesa na bývalé zemědělské půdě [production of young stands of the first generation of forest on the former agricultural land]. Zprávy Lesnického Výzkumu 56:118–124 (In Czech)

    Google Scholar 

  • Bartoš J, Souček J, Kacálek D (2010) Porovnání vlastností dřeva padesátiletých smrkových porostů na stanovištích s různou historií využití půdy [comparison of wood properties of fifty years old spruce stands on sites with different history of soil utilization]. Zprávy Lesnického Výzkumu 55:195–200 (In Czech)

    Google Scholar 

  • Bastrup-Birk A, Gundersen P (2004) Water quality improvements from afforestation in an agricultural catchment in Denmark illustrated with the INCA model. Hydro Earth Syst Sci 8:764–777. https://doi.org/10.5194/hess-8-764-2004

    Article  CAS  Google Scholar 

  • Battipaglia G, Saurer M, Cherubini P, Siegwolf RTW, Cotrufo MF (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. For Ecol Manag 257:820–828. https://doi.org/10.1016/j.foreco.2008.10.015

    Article  Google Scholar 

  • Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59(1):1–13. https://doi.org/10.3354/cr01204

    Article  Google Scholar 

  • Beneš S (1993) Obsahy a bilance prvků ve sférách životního prostředí. I. Část. MZe ČR, Praha

  • Bergqvist G, Bergström R, Wallgren M (2014) Recent browsing damage by moose on Scots pine, birch and aspen in young commercial forests—effects of forage availability, moose population density and site productivity. Silva Fenn 48:1–13. https://doi.org/10.14214/sf.1077

    Article  Google Scholar 

  • Berndes G, Abt B, Asikainen A, Cowie A, Dale V, Egnell G, Lindner M, Marelli L, Paré M, Pingoud K, Yeh S (2016) Forest biomass, carbon neutrality and climate change mitigation. From Sci Policy 3:1–28

    Google Scholar 

  • Biondi F, Waikul K (2004) Dendroclim2002: a C++ program for statistical calibration of climatesignals in tree-ring chronologies. Comput Geosci 30:303–311. https://doi.org/10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J for Res 24:473–482. https://doi.org/10.1080/02827580903418224

    Article  Google Scholar 

  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech lands: 1801–2015. Agri Meteor 250:47–63. https://doi.org/10.1016/j.agrformet.2017.11.036

    Article  Google Scholar 

  • Broadmeadow MSJ, Ray D, Samuel CJA (2005) Climate change and the future for broadleaved tree species in Britain. Forestry 78:145–161. https://doi.org/10.1093/forestry/cpi014

    Article  Google Scholar 

  • Bublinec E (1994) Koncentrácia, akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme [Concentration, accumulation and cycling of elements in beech and spruce ecosystems]. Acta Dendrobiologica, Zvolen

    Google Scholar 

  • Bunn AG, Jansma E, Korpela M, Westfall RD, Baldwin J (2013) Using simulations and data to evaluate mean sensitivity (ζ) as a useful statistic in dendrochronology. Dendrochronologia 31(3):250–254. https://doi.org/10.1016/j.dendro.2013.01.004

    Article  Google Scholar 

  • Bunn A, Korpela M. (2018a) An introduction to dplR. Available from: https://cran.r-project.org/web/packages/dplR/vignettes/intro-dplR.pdf. Accessed 10 May 2021

  • Bunn A, Korpela M. (2018b) Chronology Building in dplR. Available from: https://cran.r-project.org/web/packages/dplR/vignettes/chron-dplR.pdf. Accessed 10 May 2021

  • Candaele R, Lejeune P, Licoppe A, Malengreaux C, Brostaux Y, Morelle K, Latte N (2021) Mitigation of bark stripping on spruce: the need for red deer population control. Eur J for Res 140(1):227–240. https://doi.org/10.1007/s10342-020-01326-z

    Article  Google Scholar 

  • Castillo CP, Crisioni CHJ, Diogo V, Lavalle C (2021) Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: an application for the EU. Env Model Soft 136:104–946. https://doi.org/10.1016/j.envsoft.2020.104946

    Article  Google Scholar 

  • Cools N, De Vos B (2016) Part X: Sampling and analysis of soil. In: UIFPC Centre (Ed), Manual on methods and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde ,Germany, pp 29 + Annex

  • Crookston NL, Stage AR (1999) Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden

  • Cukor J, Vacek Z, Linda R, Bílek L (2017) Carbon sequestration in soil following afforestation of former agricultural land in the Czech Republic. Cent Eur 63:97–104. https://doi.org/10.1515/forj-2017-0011

    Article  Google Scholar 

  • Cukor J, Vacek Z, Linda R, Sharma RP, Vacek S (2019a) Afforested farmland vs forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLoS ONE 14(8):e0221082. https://doi.org/10.1371/journal.pone.0221082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukor J, Vacek Z, Linda R, Vacek S, Marada P, Šimůnek V, Havránek F (2019b) Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests 10(4):320. https://doi.org/10.3390/f10040320

    Article  Google Scholar 

  • Cukor J, Zeidler A, Vacek Z, Vacek S, Šimůnek V, Gallo J (2020) Comparison of growth and wood quality of Norway spruce and European larch: effect of previous land use. Eur J for Res 139:459–472. https://doi.org/10.1007/s10342-020-01259-7

    Article  Google Scholar 

  • Cukor J, Vacek Z, Vacek S, Linda R, Podrázský V (2022) Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: a case study of suitability of native tree species in the submontane zone in Czechia. CATENA 210:105893. https://doi.org/10.1016/j.catena.2021.105893

    Article  CAS  Google Scholar 

  • D’Aprile D, Vacchiano G, Meloni F, Garbarino M, Motta R, Ducoli V (2020) Effects of twenty years of ungulate browsing on forest regeneration at paneveggio reserve, Italy. Forests 11:612. https://doi.org/10.3390/f11060612

    Article  Google Scholar 

  • Ding H, Pretzsch H, Schütze G, Rötzer T (2017) Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol 19:709–719. https://doi.org/10.1111/plb.12596

    Article  CAS  PubMed  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe a dendroecological study. For Ecol Manag 173:63–78. https://doi.org/10.1016/S0378-1127(01)00816-7

    Article  Google Scholar 

  • Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J for Res 125(3):249–259. https://doi.org/10.1007/s10342-005-0098-y

    Article  Google Scholar 

  • Drexhage M, Colin F (2001) Estimating root system biomass from breast-height diameters. Forestry 74(5):491–497. https://doi.org/10.1093/forestry/74.5.491

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Kopp G, Ruff M, Leuschner C (2017) European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31:673–686. https://doi.org/10.1007/s00468-016-1499-x

    Article  Google Scholar 

  • Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32(2):178–187. https://doi.org/10.1093/treephys/tps004

    Article  PubMed  Google Scholar 

  • Ellison DN, Futter M, Bishop K (2012) On the forest cover–water yield debate: from demand- to supply-side thinking. Glob Change Biol 18:806–820. https://doi.org/10.1111/j.1365-2486.2011.02589.x

    Article  Google Scholar 

  • Forest Europe (2015) State of Europe’s Forests 2015. Ministerial conference on the protection of forests in Europe, Forest Europe, Liaison Unit Madrid, Madrid

  • European communities (2003) Sustainable forestry and the European union initiatives of the European commission. Office for Official Publications of the European Communities, Belgium, p 60

    Google Scholar 

  • Fabrika M (2006) Spatial decision support system with model SIBYLA and GIS. Deutscher Verband Forstlicher Forschungskunde, Jahrestagung 29(31):64–72

    Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J for Sci 51(10):431–445

    Article  Google Scholar 

  • FAO (2008) Fighting food inflation through sustainable investment: grain production and export potential in CIS countries e rising food prices: causes consequences and policy responses. Rome: Food Agric Organ United Nations 10:16

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Advan Ecol Res 19:111–188. https://doi.org/10.1016/S0065-2504(08)60158-0

    Article  Google Scholar 

  • Fuchs Z, Vacek Z, Vacek S, Gallo J (2021) Effect of game browsing on natural regeneration of European beech (Fagus sylvatica L) forests in the Krušné hory Mts (Czech Republic and Germany). Cent Eur for J 67(3):166–181. https://doi.org/10.2478/forj-2021-0008

    Article  Google Scholar 

  • Füldner K (1995) Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern [Structure description of beech mixed hardwood mixed forests]. Dissertation Forstliche Fakultät Göttingen, Cuvillier Verlag, Göttingen, 128 pp. (in German)

  • Gallo J, Bílek L, Šimůnek V, Roig S, Fernández JAB (2020) Uneven-aged silviculture of scots pine in Bohemia and Central Spain: comparison study of stand reaction to transition and long-term selection management. J for Sci 66:22–35. https://doi.org/10.17221/147/2019-JFS

    Article  Google Scholar 

  • Gömöry D, Krajmerová D, Hrivnák M, Longauer R (2020) Assisted migration vs. close-to-nature forestry: what are the prospects for tree populations under climate change? Cent Eur for J 66:63–70. https://doi.org/10.2478/forj-2020-0008

    Article  Google Scholar 

  • Grala-Michalak J, Kaźmierczak K (2011) Discriminant analysis for Kraft’s classes of trees. Bio Let 48(1):67–81

    Article  Google Scholar 

  • Grissino-Mayer HD, Holmes RL, Fritts HC (1992) International tree-ring data bank program library: user’s manua laboratory of tree-ring research. University of Arizona, Tuscon, USA

    Google Scholar 

  • Hacurová J, Hacura J, Gryc V, Černý J, Vavrčík H (2020) Xylogenesis and phloemogenesis of Norway spruce in different ages stands at middle altitudinal zone. Wood Res 65:937–950. https://doi.org/10.37763/wr.1336-4561/65.6.937950

    Article  Google Scholar 

  • Hájek V, Vacek S, Vacek Z, Cukor J, Šimůnek V, Šimková M, Prokůpková A, Králíček I, Bulušek D (2021) Effect of climate change on the growth of endangered scree forests in Krkonoše national park (Czech Republic). Forests 12(8):1127. https://doi.org/10.3390/f12081127

    Article  Google Scholar 

  • Halaj J (1987) Rastové tabuľky hlavných drevín ČSSR. Príroda, Bratislava

  • Hansen JK, Jorgensen BB, Stoltze P (2003) Variation of quality and predicted economic returns between European beech (Fagus sylvatica L.) provenances. Silvae Genet 52:185–196

    Google Scholar 

  • Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60(2):119–132. https://doi.org/10.3354/cr01226

    Article  Google Scholar 

  • Hauck M, Zimmermann J, Jacob M, Dulamsuren C, Bade C, Ahrends B, Leuschner C (2012) Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains, Germany. Environ Poll 164:132–141. https://doi.org/10.1016/j.envpol.2012.01.026

    Article  CAS  Google Scholar 

  • Hayter AJ (1984) A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. Ann Stat 12:61–75

    Article  Google Scholar 

  • Horák J, Novák J (2009) Effect of stand segmentation on growth and development of Norway spruce stands. J for Sci 55:323–329. https://doi.org/10.17221/61/2008-JFS

    Article  Google Scholar 

  • Horodecki P, Jagodziński AM (2017) Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For Ecol Manag 406:1–11. https://doi.org/10.1016/j.foreco.2017.09.059

    Article  Google Scholar 

  • Hradecký P. (1997) The Doupov mountains In: Vrána S, Štědrá V (eds) Geological model of Western Bohemia related to the KTB borehole in Germany. Sborník geologických věd 47:125–127

  • Jagodziński AM, Dyderski MK, Horodecki P (2020) Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For Ecol Manag 474:118–329. https://doi.org/10.1016/j.foreco.2020.118329

    Article  Google Scholar 

  • Jandl R (2020) Climate-induced challenges of Norway spruce in Northern Austria. Trees, Forests and People 1:100008. https://doi.org/10.1016/j.tfp.2020.100008

    Article  Google Scholar 

  • Jansons Ā, Matisons R, Šēnhofa S, Katrevičs J, Jansons J (2016) High-frequency variation of tree-ring width of some native and alien tree species in Latvia during the period 1965–2009. Dendrochronologia 40:151–158. https://doi.org/10.1016/j.dendro.2016.10.003

    Article  Google Scholar 

  • Jensen JK, Rasmussen LH, Raulund-Rasmussen K, Borggaard OK (2008) Influence of soil properties on the growth of sycamore (Acer pseudoplatanus L.) in Denmark. Eur J for Res 127:263. https://doi.org/10.1007/s10342-008-0202-1

    Article  CAS  Google Scholar 

  • Johansson T (2014) Total stem and merchantable volume equations of Norway Spruce (Picea abies (L.) Karst.) growing on former farmland in Sweden. Forests 5:2037–2049. https://doi.org/10.3390/f5082037

    Article  Google Scholar 

  • Kolecka N, Kozak J (2019) Wall-to-wall parcel-level mapping of agricultural land abandonment in the polish Carpathians. Land. https://doi.org/10.3390/land8090129

    Article  Google Scholar 

  • Konôpka B, Pajtík J (2015) Why was browsing by red deer more frequent but represented less consumed mass in young maple than in ash trees. J for Sci 61:431–438. https://doi.org/10.17221/70/2015-JFS

    Article  Google Scholar 

  • Konôpka J, Kaštier P, Konôpka B (2015) Theoretical bases and practical measures to harmonise the interests of forestry and game management in Slovakia. For J 61:114–123. https://doi.org/10.1515/forj-2015-0020

    Article  Google Scholar 

  • Král J, Vacek S, Vacek Z, Putalová T, Bulušek D, Štefančík I (2015) Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. For J 61:175–187

    Google Scholar 

  • Králíček I, Vacek Z, Vacek S, Remeš J, Bulušek D, Král J, Štefančík I, Putalová T (2017) Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology 77:119–137. https://doi.org/10.12657/denbio.077.010

    Article  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. https://doi.org/10.1016/j.foreco.2009.12.023

    Article  Google Scholar 

  • Lai J (2013) Canoco 5: a new version of an ecological multivariate data ordination program. Bio Sci 21(6):765. https://doi.org/10.3724/SP.J.1003.2013.04133

    Article  Google Scholar 

  • Lanz B, Dietz S, Swanson T (2018) The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecol Econ 144:260–277. https://doi.org/10.1016/j.ecolecon.2017.07.018

    Article  Google Scholar 

  • Larsson S, Lundmark T, Ståhl G (2009) Möjligheter till intensivodling av skog [Opportunities for intensive cultivation of forests]. Slutrapport från regeringsuppdrag Jo 2008/1885, SLU, 138 p. (In Swedish, English Summary)

  • Ledermann T, Neumann M (2005) Ergebnisse vorläufiger Untersuchungen zur Erstellung von Biomassefunktionen aus Daten alter Dauerversuchsflächen. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde: Jahrestagung 9–11, Mai, Freising, pp 143–152

  • van Lerberghe P. (2014) Protecting trees from wildlife damage: mesh tree guards. Printco: Paris, France

  • Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Chan Biol 19(10):3184–3199. https://doi.org/10.1111/gcb.12268

    Article  Google Scholar 

  • Liepins K, Lazdins A, Lazdina D, Daugaviete M, Miezite O (2008) Naturally afforested agricultural lands in latvia–assessment of available timber resources and potential productivity. In: Proceedings of The 7th International conference – environmental engineering, Faculty of Environmental Engineering Vilnius Gediminas Technical University, Vilnius, pp 194-200

  • Lo YH, Blanco JA, Seely B, Welham C, Kimmins JH (2010) Relationships between climate and tree radial growth in interior British Columbia, Canada. For Ecol Manag 259:932–942. https://doi.org/10.1016/j.foreco.2009.11.033

    Article  Google Scholar 

  • Luyssaert S, Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E et al (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Chan 4:389–393. https://doi.org/10.1038/nclimate2196

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol and Manag 171(3):243–259. https://doi.org/10.1016/S0378-1127(01)00786-1

    Article  Google Scholar 

  • Mareš R (2010) The extent of root rot damage in Norway spruce stands established on fertile sites of former agricultural land. J for Sci 56:1–6. https://doi.org/10.17221/36/2009-JFS

    Article  Google Scholar 

  • Mc Carthy R, Ekö PM, Rytter L (2014) Reliability of stump sprouting as a regeneration method for poplars: clonal behaviour in survival, sprout straightness and growth. Sil Fenn 48(3):1–9. https://doi.org/10.14214/sf.1126

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich III soil test extractant: a modification of the mehlich II extractant. Comm Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Meyer FD, Bräker OU (2001) Climate response in dominant and suppressed spruce trees, Picea abies (L.) Karst., on subalpine and lower montana site in Switzerland. Ecoscience 8:105–114. https://doi.org/10.1080/11956860.2001.11682636

    Article  Google Scholar 

  • Mikkelsen TN, Mohren GMJ, Le Thiec D, Tuovinen JP, Weatherall A, Paoletti E (2012) Forests under climate change and air pollution: gaps in understanding and future directions for research. Env Poll 160:57–65. https://doi.org/10.1016/j.envpol.2011.07.007

    Article  CAS  Google Scholar 

  • Mikulenka P, Prokůpková A, Vacek Z, Vacek S, Bulušek D, Simon J, Šimůnek V, Hájek V (2020) Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Cent Eur for J 66:23–36. https://doi.org/10.2478/forj-2019-0026

    Article  Google Scholar 

  • Ministry of Environment (2017) The climate protection policy of the Czech Republic, https://www.mzp.cz/en/climate_policy_of_the_czech_republic. Accessed 25 Apr 2021

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Brignolas F (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of populus deltoids × populus nigra. New Phyto 169(4):765–777. https://doi.org/10.1111/j.1469-8137.2005.01630.x

    Article  Google Scholar 

  • Morecroft MD, Stokes JS, Taylor ME, Morison JIL (2008) Effects of climate and management history on the distribution and growth of sycamore (Acer pseudoplatanus L.) in a southern British woodland in comparison to native competitors. Forestry 81(1):59–74. https://doi.org/10.1093/forestry/cpm045

    Article  Google Scholar 

  • Motl J, Špalek V (1961) Pěstujeme topoly [We grow poplars]. SZN: Praha, 309 pp., (in Czech)

  • Motta R (2003) Ungulate impact on rowan (Sorbus aucuparia L.) and Norway spruce (Picea abies [L.] Karst.) height structure in mountain forests in the eastern Italian Alps. For Ecol Manag 181:139–150. https://doi.org/10.1016/S0378-1127(03)00128-2

    Article  Google Scholar 

  • Nabuurs GJ, Delacote P, Ellison D, Hanewinkel M, Hetemäki L, Lindner M (2017) By 2050 mitigation effects of EU forests could nearly double through European climate smart forestry. Forests 8:484. https://doi.org/10.3390/f8120484

    Article  Google Scholar 

  • Nilsson S, Schopfhauser W (1995) The carbon-sequestration potential of a global afforestation program. Clim Change 30:267–293. https://doi.org/10.1007/BF01091928

    Article  CAS  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H, Ikonen VP (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of scots pine, Norway spruce, and birch. Can J for Res 29(6):647–661. https://doi.org/10.1139/x99-029

    Article  Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. Lesnícky Časopis 37(1):49–56

    Google Scholar 

  • Petráš R, Košút M, Oszlányi J (1985) Listová biomasa stromov smreka, borovice a buka. Lesnícky Časopis 31(2):121–135

    Google Scholar 

  • Pommerening A, Murphy ST (2004) A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77:27–44. https://doi.org/10.1093/forestry/77.1.27

    Article  Google Scholar 

  • Pretzsch H, Forrester DI (2017) Stand dynamics of mixed-species stands compared with monocultures. Mixed-species forests. Springer, Berlin Heidelberg, pp 117–209. https://doi.org/10.1007/978-3-662-54553-9_4

    Chapter  Google Scholar 

  • Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A et al (2016) Mixing of scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manage 373:149–166. https://doi.org/10.1016/j.foreco.2016.04.043

    Article  Google Scholar 

  • Pretzsch H, Grams T, Häberle KH, Pritsch K, Bauerle T, Rötzer T (2020a) Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. results of the KROOF throughfall exclusion experiment. Trees—Struct Funct 34:957–970. https://doi.org/10.1007/s00468-020-01973-0

    Article  Google Scholar 

  • Pretzsch H, Steckel M, Heym M, Biber P, Ammer C, Ehbrecht M, Bielak K, Bravo F, Ordóñez C, Collet C, Vast F, Droessler L, Brazaitis G, Jansons A, Coll L, Löf M, Aldea J, Korboulewsky N, Reventlow DOJ, Nothdurft A, Engel M, Pach M, Skrzyszewski J, Pardos M, Ponnete Q, Sitko R, Fabrika M, Svoboda M, Černý J, Wolff A, Ruiz-Peinado R, del Río M (2020b) Stand growth and structure of monospecific and mixed-species stands of scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (MATT.) LIEBL.) analysed along a productivity gradient through Europe. Eur J for Res 139:349–367. https://doi.org/10.1017/s10342-019-01233-y

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. URL. www.R-project.org/. Accessed 17 May 2021

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann for Sci 71(2):211–225. https://doi.org/10.1007/s13595-013-0306-8

    Article  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208. https://doi.org/10.1093/treephys/tpq035

    Article  PubMed  Google Scholar 

  • Rodríguez-Soalleiro R, Eimil-Fraga C, Gómez-García E, García-Villabrille JD, Rojo-Alboreca A, Muñoz F, Pérez-Cruzado C (2018) Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. For Ecos 5(1):1–18. https://doi.org/10.1186/s40663-018-0154-y

    Article  Google Scholar 

  • Roloff A, Korn S, Gillner S (2009) The climate-species-matrix to select tree species for urban habitats considering climate change. Urb Urb Green 8(4):295–308. https://doi.org/10.1016/j.ufug.2009.08.002

    Article  Google Scholar 

  • Rybníček M, Žid T, Kolář T (2010) Radial growth and health condition of Norway spruce (Picea abies (L.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36:9–16. https://doi.org/10.2478/v10003-010-0017-1

    Article  Google Scholar 

  • Rytter RM, Rytter L (2020) Forest Ecology and Management carbon sequestration at land use conversion—early changes in total carbon stocks for six tree species grown on former agricultural land. For Ecol Manag 466:118–129. https://doi.org/10.1016/j.foreco.2020.118129

    Article  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Reyer CP (2017) Forest disturbances under climate change. Nat Clim Chan 7(6):395–402. https://doi.org/10.1038/nclimate3303

    Article  Google Scholar 

  • Seifert T, Schuck J, Block J, Pretzsch H (2006) Simulation von Biomasse- und Nährstoffgehalt von Waldbäumen. Deutscher Verband Forstlicher Forschungsanstalten: Sektion Ertragskunde, Jahrestagung 29.-31, Mai, Staufen, pp. 208–223

  • Seserman DM, Pohle I, Veste M, Freese D (2018) Simulating Climate Change Impacts on Hybrid-Poplar and Black Locust Short Rotation Coppices. Forests 9(7):419. https://doi.org/10.3390/f9070419

    Article  Google Scholar 

  • Siegel S, Castellan Jr NJ (1988). Nonparametric statistics for the behavioral sciences, 2nd ed. Nonparametric statistics for the behavioral sciences, 2nd ed. Mcgraw-Hill Book Company, New York, NY, England

  • Sierota Z (2013) Heterobasidion root rot in forests on former agricultural lands in Poland: scale of threat and prevention. Sci Res Ess 8:2298–2305. https://doi.org/10.5897/SRE2013.5724

    Article  Google Scholar 

  • Šimůnek V, Vacek Z, Vacek S (2020a) Solar cycles in salvage logging: national data from the Czech Republic confirm significant correlation. Forests 11(9):973. https://doi.org/10.3390/f11090973

    Article  Google Scholar 

  • Šimůnek V, Sharma RP, Vacek Z, Vacek S, Hůnová I (2020b) Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše mountains: a forest science from different perspective. Eur J for Res 139:999–1013. https://doi.org/10.1007/s10342-020-01302-7

    Article  Google Scholar 

  • Slodičák M, Novák J (2006) Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For Ecol Manag 224:252–257. https://doi.org/10.1016/j.foreco.2005.12.037

    Article  Google Scholar 

  • Steckel M, del Río M, Heym M, Aldea J, Bielak K, Brazaitis G, Černý J, Coll L, Collet C, Ehbrecht M, Jansons A, Nothdurft A, Pach M, Pardos M, Ponette Q, Reventlow D, Sitko R, Svoboda M, Vallet P, Wolff B, Pretzsch H (2020) Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.)—site water supply and fertility modify the mixing effect. For Ecol Manag 461:117908. https://doi.org/10.1016/j.foreco.2020.117908

    Article  Google Scholar 

  • TIBCO (2017) Quick reference, software release 13.3. TIBCO Statistika, p 205. www.tibco.org/. Accessed 17 May 2021

  • Toth D, Maitah M, Maitah K, Jarolínová V (2020) The impacts of calamity logging on the development of spruce wood prices in czech forestry. Forests 11(3):283. https://doi.org/10.3390/f11030283

    Article  Google Scholar 

  • ÚHÚL (2007) National Forest Inventory in the Czech Republic 2001–2004: Introduction, methods, results. Forest Management Institute, Brandýs na Labem, p 224

  • Vacek S, Simon J, Podrázský V, Baláš M, Slávik M, Turčáni M (2009) Zakládání a stabilizace lesních porostů založených na bývalých zemědělských a degradovaných půdách [Establishment and stabilization of forest stands based on former agricultural and degraded soils]. Lesnická práce s. r. o.: Kostelec nad Černými lesy, 792 pp., (in Czech)

  • Vacek Z, Vacek S, Bílek L, Král J, Remeš J, Bulušek D, Králíček I (2014) Ungulate impact on natural regeneration in spruce-beech-fir stands in Černý důl nature reserve in the Orlické Hory mountains, case study from central Sudetes. Forests 5:2929–2946. https://doi.org/10.3390/f5112929

    Article  Google Scholar 

  • Vacek Z, Vacek S, Podrázský V, Král J, Bulušek D, Putalová T, Baláš M, Kalousková I, Schwarz O (2016) Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology 75:31–44. https://doi.org/10.12657/denbio.075.004

    Article  Google Scholar 

  • Vacek S, Vacek Z, Kalousková I, Cukor J, Bílek L, Moser WK, Bulušek D, Podrázský V, Řeháček D (2018) Sycamore maple (Acer pseudoplatanus L.) stands on former agricultural land in the Sudetes-evaluation of ecological value and production potential. Dendrobiology 79:61–76. https://doi.org/10.12657/denbio.079.006

    Article  Google Scholar 

  • Vacek S, Prokůpková A, Vacek Z, Bulušek D, Šimůnek V, Králíček I, Hájek V (2019) Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J for Sci 65(9):331–345. https://doi.org/10.17221/82/2019-JFS

    Article  Google Scholar 

  • Vacek Z, Cukor J, Linda R, Vacek S, Šimůnek V, Brichta J, Gallo J, Prokůpková A (2020a) Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For Ecol Manag 474:118360. https://doi.org/10.1016/j.foreco.2020.118360

    Article  Google Scholar 

  • Vacek Z, Prokůpková A, Vacek S, Cukor J, Bílek L, Gallo J, Bulušek D (2020b) Silviculture as a tool to support stability and diversity of forests under climate change: study from Krkonoše mountains. Cent Eur for J 66:116–129. https://doi.org/10.2478/forj-2020-0009

    Article  Google Scholar 

  • Vacek Z, Cukor J, Vacek S, Linda R, Prokůpková A, Podrázský V, Šimůnek V, Drábek O, Hájek V, Spasic M, Brichta J (2021) Production potential, biodiversity and soil properties of forest reclamations: opportunities or risk of introduced coniferous tree species under climate change? Eur J for Res 140:1243–1266. https://doi.org/10.1007/s10342-021-01392-x

    Article  CAS  Google Scholar 

  • van der Maaten-Theunissen M, Kahle HP, van der Maaten E (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann for Sci 70(2):185–193. https://doi.org/10.1007/s13595-012-0241-0

    Article  Google Scholar 

  • Vares A, Uri V, Tullus H, Kanal A (2003) Height growth of four fastgrowing deciduous tree species on former agricultural lands in Estonia. Balt for 9:2–8

    Google Scholar 

  • Viger M, Smith HK, Cohen D, Dewoody J, Trewin H, Steenackers M, Taylor G (2016) Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). Tree Physiol 36(7):909–928. https://doi.org/10.1093/treephys/tpw017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitali V, Büntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chan Biol 23(12):5108–5119. https://doi.org/10.1111/gcb.13774

    Article  Google Scholar 

  • Vitasse Y, Bottero A, Cailleret M, Bigler C, Fonti P, Gessler A, Wohlgemuth T (2019) Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob Chan Biol 25(11):3781–3792. https://doi.org/10.1111/gcb.14803

    Article  Google Scholar 

  • Vondráková A, Vávra A, Voženílek V (2013) Climatic regions of the Czech Republic. J Maps 9(3):425–430. https://doi.org/10.1080/17445647.2013.800827

    Article  Google Scholar 

  • Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641. https://doi.org/10.1104/pp.003814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Clim 23(2):201–213. https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO;2

    Article  Google Scholar 

  • Winkler K, Fuchs R, Rounsevell M (2021) Global land use changes are four times greater than previously estimated. Nat Commun 12:2501. https://doi.org/10.1038/s41467-021-22702-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Wang Q, Wang Y, Zhou W, Ding H, Fang X, Jiang S, Dai L (2011) Climatic effects on radial growth of major tree species on Changbai mountain. Ann for Sci 68:921–933. https://doi.org/10.1007/s13595-011-0098-7

    Article  Google Scholar 

  • Zang C, Buras A, Cecile J, Mudelsee M, Schulz M, Pucha-Cofrep D (2018) Package ‘dplR’, dendrochronology program library in R version, URL https://r-forge.r-project.org/projects/dplr/ 134 pp. Accessed 10 May 2021

  • Źróbek-Różańska A, Nowak A, Nowak M, Źróbek S (2014) Financial dilemmas associated with the afforestation of low-productivity farmland in Poland. Forests 5(11):2846–2864. https://doi.org/10.3390/f5112846

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Richard Lee Manore, a native speaker, and Jitka Šišáková, an expert in the field, for checking the English. Acknowledgement goes to the Czech Hydrometeorological Institute for providing the climate data sets. Finally, we also thank the three anonymous reviewers and the editor for their constructive comments and suggestions that helped improve the article.

Funding

This study was supported by the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (Excellent team 2021–2022) and Ministry of Agriculture of the Czech Republic (No. QK1910232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Vacek.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by S. Vospernik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, Z., Bílek, L., Remeš, J. et al. Afforestation suitability and production potential of five tree species on abandoned farmland in response to climate change, Czech Republic. Trees 36, 1369–1385 (2022). https://doi.org/10.1007/s00468-022-02295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-022-02295-z

Keywords

Navigation