Skip to main content

Advertisement

Log in

Do low chill peach cultivars in mild winter regions undergo endodormancy?

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key Message

This study contributed to understand the adaptation mechanism of low chilling peach cultivars in a mild winter region according to the contents and mobilization of carbohydrates during dormancy and resumption of growth.

Abstract

The understanding of the physiological processes that occur in the peach tree during the dormancy period in mild winter regions (MWR) is important for the selection of new cultivars more adapted to these regions. The aim of this study was to bring more elements to build mechanistic understanding of non-structural carbohydrate (NSC) mobilization in one-year shoots of two low winter chilling peach cultivars, ‘T. Beauty’ and ‘S. Áurea’, during the dormancy period and the resumption of growth in MWR and their interactions with blooming and leafing. It is hypothesized that these low chilling peach cultivars do not enter into deep endodormancy and are, therefore, able to respond to external cues of growth and development. Our results showed that the amount of starch reserve, the mobilization and the use of NSC by buds are not limiting for low chilling cultivars during dormancy period in mild winter regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köeppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Améglio T, Lacointe A, Julien JL, Petel G, Guilliot A (2007) Spatial activity and expression of plasma membrane H+- ATPase in xylem of walnut tree (Juglans regia L.), during dormancy and growth resumption. Tree Physiol 22:1471–1480. https://doi.org/10.1093/treephys/27.10.1471

    Article  Google Scholar 

  • Améglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol 21:387–394. https://doi.org/10.1093/treephys/21.6.387

    Article  PubMed  Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220. https://doi.org/10.1093/treephys/22.17.1211

    Article  PubMed  Google Scholar 

  • Balandier P, Gendraud M, Rageau R, Bonhomme M, Richard JP, Parisot E (1993) Bud break delay on single node cuttings and bud capacity for nucleotide accumulation as parameters for endo and paradormancy in peach trees in a tropical climate. Sci Hortic 55:249–261. https://doi.org/10.1016/0304-4238(93)90036-P

    Article  CAS  Google Scholar 

  • Bassi D, Bartolini S, Viti R (2006) Recent advances on environmental and physiological challenges in apricot growing. Acta Hort 717:23–31. https://doi.org/10.17660/ActaHortic.2006.717.1

    Article  CAS  Google Scholar 

  • Bonhomme M, Rageau R, Lacointe A, Gendraud M (2005) Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci Hortic 105:223–240. https://doi.org/10.1016/j.scienta.2005.01.015

    Article  CAS  Google Scholar 

  • Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S, Lacointe A (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102. https://doi.org/10.1093/treephys/tpp103

    Article  CAS  PubMed  Google Scholar 

  • Bonicel A, Raposo N (1990) Variation of starch and soluble sugars in selected sections of poplar buds during dormancy and post-dormancy. Plant Physiol Biochem 28:577–586

    CAS  Google Scholar 

  • Brunel N (2001) Etude du déterminisme de la préséance des bourgeons le long du rameau d’un an chez le pommier (Malus domestica L. Borkh.): approches morphologique, biochmique et moléculaire. Université Angers

  • Byrne DH, Wayne B, Bacon TA (2000) Stone fruit genetic pool and its exploitation for growing under warm winter conditions. In: Erez A (ed) Temperate fruit crops in warm climate. Kluwer Academic, Dordrecht, pp 157–230

    Chapter  Google Scholar 

  • Carvalho RIN, Zanette F, Maurer-Menestrina J (2006) Variações do conteúdo de proteínas em gemas e ramas com um e dois anos de idade de macieira durante a dormência. Rev Bras Agric 12:145–149. https://doi.org/10.18539/cast.v12i2.4510

    Article  Google Scholar 

  • Citadin I, Raseira MCB, Herter FG, Baptista Da Silva J (2001) Heat requirement for blooming and leafing in peach. HortScience 36:305–307. https://doi.org/10.21273/HORTSCI.36.2.305

    Article  Google Scholar 

  • Citadin I, Scariotto S, Sachet MR, Rosa FJ, Raseira MCB, Wagner A Jr (2014) Adaptability and stability of fruit set and production of peach trees in a subtropical climate. Sci Agric 71:133–138. https://doi.org/10.1590/S0103-90162014000200007

    Article  Google Scholar 

  • Couto M, Raseira MCB, Herter FG, Silva JB (2010) Influence of high temperatures at blooming time on pollen production and fruit set of peach cvs. maciel and granada. Acta Horticult 872:225–230. https://doi.org/10.17660/ActaHortic.2010.872.30

    Article  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Ben BK, Brunel N, Guilliot A, Rageau R, Améglio T, Pétel G, Sakr S (2008) Sucrose (JrSUT1) and Hexoses (JrHT1 and 2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol 28:215–224. https://doi.org/10.1093/treephys/28.2.215

    Article  CAS  PubMed  Google Scholar 

  • El Yaacoubi A, Malagi G, Oukabli A, Citadin I, Hafidi M, Bonhomme M, Legave JM (2016) Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees. Int J Biometeorol 60:1695–1710. https://doi.org/10.1007/s00484-016-1160-9

    Article  PubMed  Google Scholar 

  • Erez A (2000) Bud dormancy; phenomenon problems and solutions in the tropics and subtropics. In: Erez A (ed) Temperate fruit crops in warm climate. Kluwer Academic Publishers, The Netherlands, pp 17–48

    Chapter  Google Scholar 

  • Fadón E, Herrera S, Guerrero BI, Guerra ME, Rodrigo J (2020) Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy 10:409. https://doi.org/10.3390/agronomy10030409

    Article  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. HortScience 32:623–629. https://doi.org/10.21273/hortsci.32.4.623

    Article  Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: computer simulation of processes studied under controlled temperatures. J Theor Biol 126:309–321

    Article  Google Scholar 

  • Fuchigami LH, Nee CC (1987) Degree growth model and rest breaking mechanism in temperate woody perennials. HortScience 22:836–845

    Google Scholar 

  • Hussain S, Niu Q, Yang F, Hussain N, Teng Y (2015) The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol Plant 59(4):726–734. https://doi.org/10.1007/s10535-015-0547-5

    Article  CAS  Google Scholar 

  • Ito A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194. https://doi.org/10.1016/j.scienta.2012.07.009

    Article  CAS  Google Scholar 

  • Kaufmann H, Blanke M (2017) Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry. J Plant Physiol 218:1–5. https://doi.org/10.1016/j.jplph.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  • Lacointe A, Deleens E, Améglio T, Saint-Joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004) Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches. Plant Cell Environ 27:1159–1168. https://doi.org/10.1111/j.1365-3040.2004.01221

    Article  CAS  Google Scholar 

  • Lamp BM, Connell JH, Duncan RA, Viveros M, Polito VS (2001) Almond flower development: floral initiation and organogenesis. J Am Soc Hortic Sci 126:689–696. https://doi.org/10.21273/JASHS.126.6.689

    Article  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, Para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Layne REC, Ward GM (1978) Rootstock and seasonal influences on carbohydrate levels and cold hardiness of Redhaven peach. J Am Soc Hort Sci 103

  • Leite GB, Bonhomme M, Lacointe A, Rageau R, Sakr S, Guilliot A, Maurel K, Petel G, Couto-Rodriguez A (2004) Influence of lack of chilling on bud-break patterns and evolution of sugar contents in buds and stem tissues along the one-year-old shoot of the peach trees. Acta Hortic 662:61–71. https://doi.org/10.17660/actahortic.2004.662.5

    Article  Google Scholar 

  • Malagi G, Sachet MR, Citadin I, Herter FG, Bonhomme M, Regnard JL, Legave JM (2015) The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees Struct Funct 29:1365–1380. https://doi.org/10.1007/s00468-015-1214-3

    Article  Google Scholar 

  • Marafon AC, Citadin I, Amarante L, Herter FG, Hawerroth FJ (2011) Chilling privation during dormancy period and carbohydrate mobilization in Japanese pear trees. Sci Agric 68:462–468. https://doi.org/10.1590/S0103-90162011000400011

    Article  CAS  Google Scholar 

  • Marquat C, Vandamme M, Gendraud M, Pétel G (1999) Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Sci Hortic 79:151–162

    Article  CAS  Google Scholar 

  • Maurel K, Leite GB, Bonhomme M, Guilliot A, Rageau R, Pétel G, Sakr S (2004a) Trophic control of bud break in peach (Prunus persica) trees: a possible role of hexoses. Tree Physiol 24:579–588. https://doi.org/10.1093/treephys/24.5.579

    Article  CAS  PubMed  Google Scholar 

  • Maurel K, Sakr S, Gerbe F, Guilliot A, Bonhomme M, Rageau R, Pétel G (2004b) Sorbitol uptake is regulated by glucose through the hexokinase pathway in vegetative peach-tree buds. J Exp Bot 55:879–888. https://doi.org/10.1093/jxb/erh087

    Article  CAS  PubMed  Google Scholar 

  • Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J (1994) Phanologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere Ribes-Arten) und der Erdbeere (Fragaria x ananassa. Nachrichtenblatt Des Dtsch Pflanzenschutzdienstes 46:141–153

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moing A, Carbonne F, Rashad MH, Vaudillere JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 106:591–600. https://doi.org/10.1104/pp.100.4.1878

    Article  Google Scholar 

  • Nava GA, Dalmago GA, Bergamaschi H, Paniz R, Santos RP, Marodin GAB (2009) Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of “Granada” peach. Sci Hortic 122:37–44. https://doi.org/10.1016/j.scienta.2009.03.021

    Article  Google Scholar 

  • Okie WR, Blackburn B (2011) Increasing chilling reduces heat requirement for floral budbreak in peach. HortScience 46:245–252. https://doi.org/10.21273/HORTSCI.46.2.245

    Article  Google Scholar 

  • Oukabli A, Mahhou A (2007) Dormancy in sweet cherry (Prunus avium L.) under Mediterranean climatic conditions. Biotechnol Agron Soc Environ 11:133–139

    Google Scholar 

  • Penso GA, Citadin I, Scariotto S, Magalhães dos Santos CE, Junior A, Bruckner C, Rodrigo J (2020) Development of peach flower buds under low winter chilling conditions. Agronomy 10:428. https://doi.org/10.3390/agronomy10030428

    Article  Google Scholar 

  • Pertille RH, Sachet MR, Guerrezi MT, Citadin I (2019) An R package to quantify different chilling and heat models for temperate fruit trees. Comput Electron Agric 167:105067. https://doi.org/10.1016/j.compag.2019.105067

    Article  Google Scholar 

  • Pertille RH, Citadin I, Patto LS, Oldoni TLC, Scariotto S, Grigolo CR, Lauri PÉ (2021) High-chilling requirement apple cultivar has more accentuated acrotony than low-chilling one in mild winter region. Trees Struct Funct. https://doi.org/10.1007/s00468-021-02104-z

    Article  Google Scholar 

  • Petri JL, Leite GB (2004) Consequences of insufficient winter chilling on apple tree budbreak. Acta Hortic 662:53–60. https://doi.org/10.17660/ActaHortic.2004.662.4

    Article  Google Scholar 

  • Rageau R (1978) Croissance et débourrement des bourgeons végétatifs de pêcher (Prunus persica L. Batsch) au cours d’un test classique de dormance. C R Acad Sci Ser D 287:1119–1122

    Google Scholar 

  • Rageau R (1987) L'arbre et son milieu. 4. Exigences climatiques. In: J. Vidaud, I. Jacoutet, J. Thivend (Editors), Le Pêcher. Références et Techniques. Centre Technique Interprofessionnel des Fruits et Légumes, Paris, pp. 62–93.

  • Raseira MCB, Nakasu BH, Brabosa W (2014) Cultivares: Descrição e Recomendação. In: Raseira MCB, Pereira JFM, Carvalho FLC (eds) Pessegueiro. Brasília, Embrapa, pp 71–141

    Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. HortScience 9:331–332

    Google Scholar 

  • Sauter JJ (1988) Temperature-induced changes in starch and sugars in the stem of Populus x Canadensis “robusta.” J Plant Physiol 132:608–612. https://doi.org/10.1016/S0176-1617(88)80263-3

    Article  CAS  Google Scholar 

  • Sauter JJ, Wisniewski M, Witt W (1996) Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus × canadensis Moench ‹robusta›) Wood. J Plant Physiol 149:451–461. https://doi.org/10.1016/S0176-1617(96)80148-9

    Article  CAS  Google Scholar 

  • Scariotto S, Citadin I, Raseira MCB, Sachet MR, Penso GA (2013) Adaptability and stability of 34 peach genotypes for leafing under Brazilian subtropical conditions. Sci Hortic 155:111–117. https://doi.org/10.1016/j.scienta.2013.03.019

    Article  Google Scholar 

  • Spicer R (2014) Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot 65:1829–1848. https://doi.org/10.1093/jxb/ert459

    Article  CAS  PubMed  Google Scholar 

  • Tixier A, Sperling O, Orozco J, Lampinen B, Amico Roxas A, Saa S, Earles JM, Zwieniecki MA (2017) Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia. Planta 246:495–508. https://doi.org/10.1007/s00425-017-2707-7

    Article  CAS  PubMed  Google Scholar 

  • Tixier A, Gregory AG, Godfrey J, Orozco J, Zwienieck MA (2019) Non-structural carbohydrates in dormant woody perennials; the tale of winter survival and spring arrival. Front Glob Chang 2(18):1–8. https://doi.org/10.3389/ffgc.2019.00018

    Article  Google Scholar 

  • Tixier A, Guzmán-Delgado P, Sperling O, Roxas AA, Laca E, Zwieniecki MA (2020) Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Sci Rep 10:347. https://doi.org/10.1038/s41598-019-57016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp BL, Sherman WB, Raseira MCB (2008) Low-chill cultivar development. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CAB international, Wallingford, pp 106–138

    Chapter  Google Scholar 

  • Weinberger JH (1950) Chilling requirements of Peach Varieties. Proc Am Soc Hortic Sci 56:122–128

    Google Scholar 

  • Williams LE, Nelson SJ, Hall JL (1990) Characterization of solute transport in plasma membrane vesicles isolated from cotyledons of Ricinus communis L. II—Evidence for a protoncoupled mechanism for sucrose and amino acid uptake. Planta 182:540–545

    Article  CAS  Google Scholar 

  • Young E (1989) Cytokinin and soluble carbohydrate concentrations in xylem sap of apple during dormancy and bud break. J Am Soc Hortic Sci 114:297–300

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for their financial support, and the Agronomic Institute of Paraná (IAPAR) and the Paraná Meteorological System (SIMEPAR) for allowing us access to meteorological data.

Funding

This study was funded by National Council for Scientific and Technological Development (CNPq), project 404630/2016-2, and by Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship of the Rafael Henrique Pertille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idemir Citadin.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Communicated by R. Guy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citadin, I., Pertille, R.H., Loss, E.M.S. et al. Do low chill peach cultivars in mild winter regions undergo endodormancy?. Trees 36, 1273–1284 (2022). https://doi.org/10.1007/s00468-022-02287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-022-02287-z

Keywords

Profiles

  1. Moeses Andrigo Danner
  2. Pierre-Éric Lauri