Skip to main content

Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch

Abstract

Key message

AOS enzymes can be biochemical indicators of abnormal xylogenesis in Karelian birch. The elevation of enzymatic activity correlates with the increase in wood figure intensity.

Abstract

The different biochemical strategies of the antioxidant system (AOS) enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO)) are described for the first time for various xylogenesis scenarios in Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti). Studies have shown that figured wood formation is closely associated with the secondary metabolism processes in this woody plant, as reflected in the elevation of the activity of AOS enzymes. Our results demonstrate that AOS enzymes can be used as biochemical markers of figured wood formation during active cambial growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

PPO:

Polyphenol oxidase

SS:

Sucrose synthase

ApInv:

Apoplastic invertase

ROS:

Reactive oxygen species

AOS:

Antioxidant system

References

  1. Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60(2):377–390. https://doi.org/10.1093/jxb/ern277

    CAS  Article  PubMed  Google Scholar 

  2. Antonova GF, Stasova VV (2006) Seasonal development of phloem in scots pine stems. Russ J Dev Biol 37(5):306–320. https://doi.org/10.1134/S1062360406050043

    Article  Google Scholar 

  3. Antonova GF, Stasova VV (2008) Seasonal development of phloem in Siberian larch stems. Russ J Dev Biol 39(4):207–218. https://doi.org/10.1134/S1062360408040024

    Article  Google Scholar 

  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Baril’skaya LA (1978) Structural analysis of figured wood of Karelian birch. Botanicheskii Zhurn 63:805–811 (In Russia)

    Google Scholar 

  6. Bi Y-M, Kenton P, Mur L, Darby R, Draper J (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8(2):235–245. https://doi.org/10.1046/j.1365-313X.1995.08020235.x

    CAS  Article  PubMed  Google Scholar 

  7. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194. https://doi.org/10.1093/aob/mcf118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Borges CV, Minatel IO, Gomez-Gomez HA, Lima GPP (2017) Medicinal plants: influence of environmental factors on the content of secondary metabolites. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham, pp 259–278. https://doi.org/10.1007/978-3-319-68717-9_15

    Chapter  Google Scholar 

  9. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581. https://doi.org/10.1016/j.tplants.2003.10.001

    CAS  Article  PubMed  Google Scholar 

  10. Couee I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459. https://doi.org/10.1093/jxb/erj027

    CAS  Article  PubMed  Google Scholar 

  11. Dharanishanthi V, Dasgupta MG (2015) Construction of co-expression network based on natural expression variation of xylogenesis-related transcripts in Eucalyptus tereticornis. Mol Biol Rep 43(10):1129–1146. https://doi.org/10.1007/s11033-016-4046-3

    CAS  Article  Google Scholar 

  12. Dolgodvorova SYa, Chernyaeva GN (1977) Extractive substances of birch tree. In: Extractive substances of woody trees of Central Siberia, Krasnoyarsk, USSR, pp 26–38 (In Russia)

  13. Fernández-García N, Carvajal M, Olmos E (2004) Graft union uormation in tomato plants: peroxidase and catalase involvement. Ann Bot 93(1):53–60. https://doi.org/10.1093/aob/mch014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170(4):739–752. https://doi.org/10.1111/j.1469-8137.2006.01705.x

    CAS  Article  PubMed  Google Scholar 

  15. Galibina NA, Terebova EN (2014) Physical-chemical properties of Betula pendula Roth trunk tissue cell walls. Proc Petrozavodsk State 4:19–24 (In Russia)

    Google Scholar 

  16. Galibina NA, Novitskaya LL, Krasavina MS, Moshchenskaya YuL (2015a) Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth. Russ J Plant Physiol 62(3):381–389. https://doi.org/10.1134/S102144371503005X

    CAS  Article  Google Scholar 

  17. Galibina NA, Novitskaya LL, Krasavina MS, Moshchenskaya YuL (2015b) Invertase activity in trunk tissues of Karelian birch. Russ J Plant Physiol 62(6):804–813. https://doi.org/10.1134/S1021443715060060

    CAS  Article  Google Scholar 

  18. Galibina NA, Novitskaya LL, Nikerova KM (2016a) Excess of exogenous nitrates inhibits formation of abnormal wood in the Karelian birch. Russ J Dev Biol 47(2):69–76. https://doi.org/10.1134/S106236041602003X

    CAS  Article  Google Scholar 

  19. Galibina NA, Moshkina EV, Nikerova KM, Moshchenskaya YuL, Znamenskii SR (2016b) Peroxydase activity indicates veining of curly birch. Lesovedenie 4:294–304 (In Russia)

    Google Scholar 

  20. Galibina NA, Novitskaya LL, Nikerova KM (2019a) Source-sink relations in the organs and tissues of silver birch during different scenarios of xylogenesis. Russ J Plant Physiol 66(2):308–315. https://doi.org/10.1134/S1021443719020067

    CAS  Article  Google Scholar 

  21. Galibina NA, Novitskaya LL, Nikerova KM, Moshchenskaya YuL, Borodina MN, Sofronova IN (2019b) Apoplastic Invertase Activity Regulation in the Cambial Zone of Karelian Birch. Russ J Dev Biol 50(1):20–29. https://doi.org/10.1134/S1062360419010028

    CAS  Article  Google Scholar 

  22. Galibina NA, Novitskaya LL, Nikerova KM, Moshkina EV, Moshchenskaya YuL, Borodina MN, Sofronova IN, Nikolaeva NN (2019c) Labile nitrogen availability in soil influences the expression of wood pattern in Karelian birch. Botanicheskii Zhurn 104(10):101–112. https://doi.org/10.1134/S0006813619100053

    Article  Google Scholar 

  23. Galibina NA, Nikerova KM (2016) Sposob diagnostiki uzorchatoi tekstury drevesiny karel'skoi berezy: Patent 2596013 Rossiiskoi Federatsii. No 2015114510/13; zayavl. 17.04.2015; opubl. 27.08.2016. Byul. No24. 4 s. (In Russia)

  24. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345. https://doi.org/10.1104/pp.106.079079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Geles IS (2001) Drevesnaja biomassa i osnovy jekologicheski priemlemyh tehnologij ee himikomehanicheskoj pererabotki. KarNC RAN, Petrozavodsk, p 382 (In Russia)

    Google Scholar 

  26. Gill T, Sreenivasulu Y, Kumar S, Ahuja PS (2010) Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana. J Plant Physiol 167(9):757–760. https://doi.org/10.1016/j.jplph.2009.12.004

    CAS  Article  Google Scholar 

  27. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322. https://doi.org/10.1104/pp.106.077073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. J Plant Growth Regul 68(2):177–188. https://doi.org/10.1007/s10725-012-9705-3

    CAS  Article  Google Scholar 

  29. Iakimova ET, Woltering EJ (2017) Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 245(4):681–705. https://doi.org/10.1007/s00425-017-2656-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4(3):393–411. https://doi.org/10.3390/plants4030393

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12(12):2339–2350. https://doi.org/10.1105/tpc.12.12.2339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Korovin VV, Novitskaya LL, Kurnosov GA (2003) Structural abnormalities of the stem in woody plants. Moscow State Forest University, Moscow, p 258 (In Russia)

    Google Scholar 

  33. Kubler H (1991) Function of spiral grain in trees. Trees 5(3):125–135

    Article  Google Scholar 

  34. Kürschner K, Hoffer A (1929) Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Tech Chem Pap Zellst Fabr 26:125–129

    Google Scholar 

  35. Maksimović JD, Maksimović V, Živanović B, Šukalović VHT, Vuletić M (2008) Peroxidase activity and phenolic com-pounds content in maize root and leaf apoplast and their association with growth. Plant Sci 175(5):656–662. https://doi.org/10.1016/j.plantsci.2008.06.015

    CAS  Article  Google Scholar 

  36. Mashkina OS, Tabatskaya TM, Isakov YuN (2000) Clonal propogation of Karelian birch. Lesnoe Khozyaĭstvo 4:33–34 (In Russia)

    Google Scholar 

  37. McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpolea G, Defernezb M, Carpitac NC, Hofted H, Ulvskove P, Wilsonb RH, Robertsa K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57(6):811–821. https://doi.org/10.1016/S0031-9422(01)00144-3

    CAS  Article  PubMed  Google Scholar 

  38. Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics. Curr Opin Plant Biol 11(3):293–300. https://doi.org/10.1016/j.pbi.2008.03.003

    CAS  Article  PubMed  Google Scholar 

  39. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47(1–2):239–274. https://doi.org/10.1007/978-94-010-0668-2_15

    CAS  Article  PubMed  Google Scholar 

  40. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  41. Minibaeva FV, Gordon LKh (2003) Superoxide production and the activity of extracellular peroxidase in plant tissues under stress conditions. Russ J Plant Physiol 50(3):411–416. https://doi.org/10.1023/A:1023842808624

    CAS  Article  Google Scholar 

  42. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):1360–1385. https://doi.org/10.1016/j.tplants.2004.08.009

    CAS  Article  Google Scholar 

  44. Moshchenskaya YuL, Galibina NA, Topchieva LV, Novitskaya LL (2017) Expression of genes encoding sucrose synthase isoforms during anomalous xylogenesis in Karelian birch. Russ J Plant Physiol 64(4):616–624. https://doi.org/10.1134/S1021443717030104

    CAS  Article  Google Scholar 

  45. Moshchenskaya YuL, Galibina NA, Novitskaya LL, Nikerova KM (2019) The role of sucrose synthase in sink organs of woody plants. Russ J Plant Physiol 66(1):10–21. https://doi.org/10.1134/S1021443719010114

    CAS  Article  Google Scholar 

  46. Nikerova KM, Galibina NA (2017) The influence of nitrate on the peroxidase activity in tissues of Betula pendula Roth var. pendula and B. pendula var. carelica (Mercklin). Sib J for Sci 1:15–24. https://doi.org/10.15372/SJFS20170102 (In Russia)

    Article  Google Scholar 

  47. Nikerova KM, Galibina NA, Moshchenskaya YuL, Novitskaya LL, Podgornaya MN, Sofronova IN (2018) The antioxidant enzymes – indicators of different xylogenesis scenarios: in early ontogeny and in adult plants (example of Betula pendula Roth). Trans KarRC RAS 11:78–87. https://doi.org/10.17076/eb787 (In Russia)

    Article  Google Scholar 

  48. Nikerova KM, Galibina NA, Moshchenskaya YL, Novitskaya LL, Podgornaya MN, Sofronova IN (2019a) Contribution of catalase and peroxidase to xylogenesis of Karelian birch. Lesovedenie 2:115–127. https://doi.org/10.1134/S0024114819020086 (In Russia)

    Article  Google Scholar 

  49. Nikerova KM, Galibina NA, Moshchenskaya YL, Novitskaya LL, Podgornaya MN, Sofronova IN (2019b) Determination of superoxide dismutase and polyphenol oxidase activity in Betula pendula var. carelica (Betulaceae) wood with different degree of xylogenesis disturbance. Rastit Resur 55(2):213–230. https://doi.org/10.1134/S0033994619020134 (In Russia)

    Article  Google Scholar 

  50. Nomura T, Shiozawa M, Ogita S, Kato Y (2013) Occurrence of hydroxycinnamoylputrescines in xylogenic bamboo suspension cells. Plant Biotechnol 30(5):447–453. https://doi.org/10.5511/plantbiotechnology.13.0704a

    CAS  Article  Google Scholar 

  51. Novitskaya LL (1998) Regeneration of bark and formation of abnormal birch wood. Trees 13(2):74–79

    Article  Google Scholar 

  52. Novitskaya LL, Kushnir FV (2006) The role of sucrose in regulation of trunk tissue development in Betula pendula Roth. J Plant Growth Regul 25(1):18–29. https://doi.org/10.1007/s00344-004-0419-2

    CAS  Article  Google Scholar 

  53. Novitskaya L, Nikolaeva N, Galibina N, Tarelkina T, Semenova L (2016) The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows. Silva Fenn 50(3):1461–1478. https://doi.org/10.14214/sf.1461

    Article  Google Scholar 

  54. Novitskaya LL, Tarelkina TV, Galibina NA, Moshchenskaya YL, Nikolaeva NN, Nikerova KM, Podgornaya MN, Sofronova IN, Semenova LI (2020) The formation of structural abnormalities in Karelian birch wood is associated with auxin inactivation and disrupted basipetal auxin transport. J Plant Growth Regul 39(1):378–394. https://doi.org/10.1007/s00344-019-09989-8

    CAS  Article  Google Scholar 

  55. Obolenskaya AV, Elnitskaya ZP, Leonovich AA (1991) Laboratory works on chemistry of wood and cellulose. Ekologiya, Moscow, p 320 (In Russia)

    Google Scholar 

  56. Olson PO, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4(5):887–892. https://doi.org/10.1046/j.1365-313X.1993.04050887.x

    CAS  Article  Google Scholar 

  57. Ortega-Garcia F, Peragon J (2009) The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). J Sci Food Agric 89(9):1565–1573. https://doi.org/10.1002/jsfa.3625

    CAS  Article  Google Scholar 

  58. Paiva JA, Garcés M, Alves A, Garnier-Géré P, Carlos Rodrigues J, Lalanne C, Porcon S, Le Provost G, da Silva PD, Brach J, Frigerio J-M, Claverol S, Barré A, Fevereiro P, Plomion C (2008) Molecular and phenotypic profiling from the base to the crown in maritime pine wood-forming tissue. New Phytol 178(2):283–301. https://doi.org/10.1111/j.1469-8137.2008.02379.x

    CAS  Article  PubMed  Google Scholar 

  59. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9(11):534–540. https://doi.org/10.1016/j.tplants.2004.09.002

    CAS  Article  PubMed  Google Scholar 

  60. Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjärvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130(2):549–560. https://doi.org/10.1104/pp.003954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Pickett-Heaps JD (1968) Xylem wall deposition. Protoplasma 65:181–205

    CAS  Article  Google Scholar 

  62. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of norway spruce (Picea abies L.). Plant Physiol 106(1):53–60. https://doi.org/10.1104/pp.106.1.53

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Pradedova EV, Isheeva OD, Salyaev RK (2011) Antioxidant defense enzymes in cell vacuoles of red beet roots. Russ J Plant Physiol 58(1):36–44. https://doi.org/10.1134/S1021443711010110

    CAS  Article  Google Scholar 

  64. Robertson D, Beech I, Bolwell GP (1995) Regulation of the enzymes of UDP-sugar metabolism during differentiation of French bean. Phytochem 39(1):21–28. https://doi.org/10.1016/0031-9422(94)00874-S

    CAS  Article  Google Scholar 

  65. Ros-Barceló A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132. https://doi.org/10.1016/S0074-7696(08)61609-5

    Article  PubMed  Google Scholar 

  66. Ros-Barceló A (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220(5):747–756. https://doi.org/10.1007/s00425-004-1394-3

    CAS  Article  PubMed  Google Scholar 

  67. Ros-Barceló A, Gómez-Ros LV (2009) Reactive oxygen species in plant cell walls. In: Rio L, Puppo A (eds) Signaling and communication in plants. Springer, Berlin, pp 73–93. https://doi.org/10.1007/978-3-642-00390-5_5

    Chapter  Google Scholar 

  68. Ros-Barceló A, Gómez-Ros LV, Ferrer MA, Hernández JA (2006) The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees 20(2):145–156. https://doi.org/10.1007/s00468-005-0020-8

    CAS  Article  Google Scholar 

  69. Savidge RA (1996) Xylogenesis, genetic and environmental regulation. JAWA J 17(3):269–310. https://doi.org/10.1163/22941932-90001580

    Article  Google Scholar 

  70. Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, pattering, and differentiation mechanisms. J Exp Bot 64(1):11–31. https://doi.org/10.1093/jxb/ers287

    CAS  Article  PubMed  Google Scholar 

  71. Sharova EI, Medvedev SS (2009) Redox reactions in apoplast of growing cells. Russ J Plant Physiol 64(1):1–14. https://doi.org/10.1134/S1021443717010149

    CAS  Article  Google Scholar 

  72. Sheptovitsky YG, Brudvig GW (1996) Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase. Biochemistry 35(50):16255–16263. https://doi.org/10.1021/bi9613842

    CAS  Article  PubMed  Google Scholar 

  73. Sin’kevich MS, Deryabin AN, Trunova TI (2009) Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism. Russ J Plant Physiol 56(2):168–174. https://doi.org/10.1134/S1021443709020046

    CAS  Article  Google Scholar 

  74. Srivastava OP, Van Huystee RB (1977) An Interrelationship among peroxidase, IAA oxidase and polyphenol oxidase from peanut cells. Can J Bot 55(20):2630–2635. https://doi.org/10.1139/b77-301

    CAS  Article  Google Scholar 

  75. Sudachkova NE, Milyutina IL, Romanova LI, Semenova GP (2004) The annual dynamics of reserve compounds and hydrolytic enzyme activity in the tissues of Pinus sylvestris L. and Larix sibirica Lebed. Eurasian J for Res 7(1):1–10

    Google Scholar 

  76. TAPPI (T222 om-11) (2011) Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta

    Google Scholar 

  77. Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220(1):105–117. https://doi.org/10.1007/s00425-004-1330-6

    CAS  Article  PubMed  Google Scholar 

  78. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

    CAS  Article  Google Scholar 

  79. Wang SY, Jiao HJ, Faust M (1991) Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron. J Plant Growth Regul 10:33–39. https://doi.org/10.1007/BF02279308

    Article  Google Scholar 

  80. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40(2):323–332. https://doi.org/10.1016/j.molcel.2010.10.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Yang HQ, Zhou CS, Wu FH, Cheng JY (2010) Effect of nitric oxide on browning and lignification of peeled bamboo shoots. Postharvest Biol Tec 57(1):72–76. https://doi.org/10.1016/j.postharvbio.2010.02.004

    CAS  Article  Google Scholar 

  82. Zhang C, Han L, Slewinski TL, Sun J, Zhang J, Wang Z-Y, Turgeon R (2014) Symplastic phloem loading in poplar. Plant Physiol 166(1):306–313. https://doi.org/10.1104/pp.114.245845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was carried out under state order to the Karelian Research Centre of the Russian Academy of Sciences (Forest Research Institute of KarRC RAS) and supported by the Russian Foundation for Basic Research, grant № 19-04-00622 A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kseniya M. Nikerova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikerova, K.M., Galibina, N.A., Moshchenskaya, Y.L. et al. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch. Trees (2021). https://doi.org/10.1007/s00468-021-02225-5

Download citation

Keywords

  • Superoxide dismutase (SOD)
  • Catalase (CAT)
  • Peroxidase (POD)
  • Polyphenol oxidase (PPO)
  • Xylogenesis
  • Karelian birch
  • Figured wood