Skip to main content

Spatial patterns of leaf shape variation in European beech (Fagus sylvatica L.) provenances

Abstract

Key message

Leaf shape in European beech provenances varies geographically, with narrower and longer lamina observed in southern provenances, indicating a direct selection favoring leaf shape that likely safeguards trees performances under less favorable growing conditions.

Abstract

Spatial and environmental patterns of European beech (Fagus sylvatica L.) leaf size and shape variations were studied using landmark-based geometric morphometrics. The study involved eight provenances originating from three biogeographic regions (i.e., Alpine, Continental, and Pannonian), spanning across six European countries (Bosnia and Herzegovina, Croatia, Germany, Hungary, Romania and Serbia). All specimens were cultivated in a common garden experiment. The symmetric component of leaf shape variation was analyzed by Procrustes ANOVA and multi‐variate analyses [principal component analysis and canonical variate analysis (CVA)], whereas MANOVA was used to examine asymmetry. Partial least square (PLS) analysis was used to assess the covariation between leaf shape and size, and geographical position and environmental variables at the sites of provenance origin, respectively. A highly observed phenotypic variation for the shape and size of leaf both within and among provenances, indicates a strong local adaptation of provenances within the species natural range. CVA revealed the existence of two clusters of provenances based on the leaf shape, i.e., the first group included provenances originating from Balkan Peninsula and Central Europe, while the second group consisted of two Romanian provenances and the northernmost provenance from Germany. Likewise, PLS evidenced that leaf shape was spatially structured along latitudinal (− 0.64) and longitudinal (0.60) gradients, with southern provenances having longer and narrower (ovate) lamina compared to the northern ones. In contrast, no correlation was found between centroid size and spatial and environmental variables. Results suggest the presence of direct selection favoring a leaf shape that likely safeguards trees from heat and water loses under less favorable growing conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abdel-Rahman EH, Taylor PJ, Contrafatto G, Lamb JM, Bloomer P, Chimimba CT (2009) Geometric craniometric analysis of sexual dimorphism and ontogenetic variation: a case study based on two geographically disparate species, Aethomys ineptus from southern Africa and Arvicanthis niloticus from Sudan (Rodentia: Muridae). Mamm Biol 74:361–373. https://doi.org/10.1016/j.mambio.2008.06.002

    Article  Google Scholar 

  2. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740–745. https://doi.org/10.1073/pnas.1315179111

    CAS  Article  PubMed  Google Scholar 

  3. Albrecht H, Fiorani F, Pieruschka R, Müller-Linow M, Jedmowski C, Schreiber L, Schurr U, Rascher U (2020) Quantitative estimation of leaf heat transfer coefficients by active thermography at varying boundary layer conditions. Front Plant Sci 10:1684. https://doi.org/10.3389/fpls.2019.01684

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alves VM, Moura MO, de Carvalho CJB (2016) Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae). Rev Bras Entomol 60:150–156. https://doi.org/10.1016/j.rbe.2016.02.003

    Article  Google Scholar 

  5. Bogunović S, Bogdan S, Lanšćak M, Ćelepirović N, Ivanković M (2020) Use of a common garden experiment in selecting adapted beech provenances for artificial stand restoration. South East Eur for 11:1–10. https://doi.org/10.15177/seefor.20-07

    Article  Google Scholar 

  6. Bolte A, Czajkowski T, Cocozza C, Tognetti R, de Miguel M, Pšidová E, Ditmarová Ĺ, Dinca L, Delzon S, Cochard H, Ræbild A, de Luis M, Cvjetkovic B, Heiri C, Müller J (2016) Desiccation and mortality dynamics in seedlings of different European beech (Fagus sylvatica L.) populations under extreme drought conditions. Front Plant Sci 7:751. https://doi.org/10.3389/fpls.2016.00751

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243. https://doi.org/10.1016/S1361-8415(97)85012-8

    CAS  Article  PubMed  Google Scholar 

  8. Borghetti M, Leonardi S, Raschi A, Snyderman D, Tognetti R (1993) Ecotypic variation of xylem embolism, phenological traits, growth parameters and allozyme characteristics in Fagus sylvatica. Funct Ecol 7:713–720. https://doi.org/10.2307/2390193

    Article  Google Scholar 

  9. Breno M, Leirs H, van Dongen S (2011) Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). J Mamm 92:1395–1406. https://doi.org/10.1644/10-MAMM-A-331.1

    Article  Google Scholar 

  10. Bussotti F, Pollastrini M (2015) Evaluation of leaf features in forest trees: methods, techniques, obtainable information and limits. Ecol Indic 52:219–230. https://doi.org/10.1016/j.ecolind.2014.12.010

    Article  Google Scholar 

  11. Bussotti F, Pancrazi M, Matteucci G, Gerosa G (2005) Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol 25:211–219. https://doi.org/10.1093/treephys/25.2.211

    CAS  Article  PubMed  Google Scholar 

  12. Cocozza C, de Miguel M, Pšidová E, Ditmarová L, Marino S, Maiuro L, Alvino A, Czajkowski T, Bolte A, Tognetti R (2016) Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Front Plant Sci 7:886. https://doi.org/10.3389/fpls.2016.00886

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cooke SB, Terhune CE (2015) Form, function, and geometric morphometrics. Anat Rec 298:5–28. https://doi.org/10.1002/ar.23065

    Article  Google Scholar 

  14. Dinca L, Onet A, Samuel AD, Tognetti R, Uhl E, Bosela M, Gömöryová E, Bielak K, Skrzyszewski J, Hukić E, Zlatanov T, de Dios-Garcia J, Tonon G, Giammarchi F, Svoboda M, Dobor L, Rolando L, Rauseo J, Pescatore T, Garbini GL, Visca A, Patrolecco L, Caracciolo AB, Grenni P (2021) Microbial soil biodiversity in beech forests of European mountains. Can J for Res 51:1–13. https://doi.org/10.1139/cjfr-2020-0139

    CAS  Article  Google Scholar 

  15. Duruflé H, Ranocha P, Mbadinga Mbadinga DL, Déjean S, Bonhomme M, San Clemente H, Viudes S, Eljebbawi A, Delorme-Hinoux V, Sáez-Vásquez J, Reichheld J-P, Escaravage N, Burrus M, Dunand C (2019) Phenotypic trait variation as a response to altitude-related constraints in Arabidopsis populations. Front Plant Sci 10:430. https://doi.org/10.3389/fpls.2019.00430

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  17. Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977. https://doi.org/10.1046/j.1365-2745.2000.00506.x

    Article  Google Scholar 

  18. Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J et al (2017) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol Rev 92:1156–1173. https://doi.org/10.1111/brv.12275

    Article  PubMed  Google Scholar 

  19. Gárate-Escamilla H, Hampe A, Vizcaíno-Palomar N, Robson TM, Benito Garzón M (2019) Range-wide variation in local adaptation and phenotypic plasticity of fitness-related traits in Fagus sylvatica and their implications under climate change. Glob Ecol Biogeogr 28:1336–1350. https://doi.org/10.1111/geb.12936

    Article  Google Scholar 

  20. Gavranović A, Bogdan S, Lanšćak M, Čehulić I, Ivankovic M (2018) Seed yield and morphological variations of beechnuts in four European beech (Fagus sylvatica L.) populations in Croatia. South East Eur for 9:17–27. https://doi.org/10.15177/seefor.18-06

    Article  Google Scholar 

  21. Gavrilov MB, Lukić T, Janc N, Basarin B, Marković SB (2019) Forestry aridity index in Vojvodina, North Serbia. Open Geosci 11:367–377. https://doi.org/10.1515/geo-2019-0029

    Article  Google Scholar 

  22. Guerin GR, Wen H, Lowe AJ (2012) Leaf morphology shift linked to climate change. Biol Lett 8:882–886. https://doi.org/10.1098/rsbl.2012.0458

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. HYSTRIX 24:103–109. https://doi.org/10.4404/hystrix-24.1-6292

    Article  Google Scholar 

  24. Gurevitch J (1992) Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130:385–394

    CAS  Article  Google Scholar 

  25. Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B (2016) Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Front Plant Sci 7:791. https://doi.org/10.3389/fpls.2016.00791

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamrick JK (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335. https://doi.org/10.1016/j.foreco.2004.05.023

    Article  Google Scholar 

  27. Harter DEV, Nagy L, Backhaus S, Beierkuhnlein C, Fussi B, Huber G, Jentsch A, Konnert M, Thiel D, Kreyling J (2015) A comparison of genetic diversity and phenotypic plasticity among european beech (Fagus sylvatica L.) populations from Bulgaria and Germany under drought and temperature manipulation. Int J Plant Sci 176:232–244. https://doi.org/10.1086/679349

    Article  Google Scholar 

  28. Hazler K, Comps B, Šugar I, Melovski L, Tashev A, Gračan J (1997) Genetic structure of Fagus sylvatica L. populations in southeastern Europe. Silvae Genet 46:229–236

    Google Scholar 

  29. Jahdi R, Arabi M, Bussotti F (2020) Effect of environmental gradients on leaf morphological traits in the Fandoghlo forest region (NW Iran). iForest 13:523–530. https://doi.org/10.3832/ifor3391-013

    Article  Google Scholar 

  30. Kempf M, Banach J, Skrzyszewska K (2018) Morphological variability of beech leaves from early and late flushing provenances. Balt for 24:210–217

    Google Scholar 

  31. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  PubMed  Google Scholar 

  32. Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 54(4):678–688. https://doi.org/10.1080/10635150590947258

    Article  PubMed  Google Scholar 

  33. Klingenberg CP, Duttke S, Whelan S, Kim M (2012) Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. J Evol Biol 25:115–129. https://doi.org/10.1111/j.1420-9101.2011.02410.x

    CAS  Article  PubMed  Google Scholar 

  34. Kubínová Z, Janáček J, Lhotáková Z, Šprtová M, Kubínová L, Albrechtová J (2018) Norway spruce needle size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration. Trees (berl West) 32:231–244. https://doi.org/10.1007/s00468-017-1626-3

    CAS  Article  Google Scholar 

  35. Kurjak D, Konôpková A, Kmeť J, Mackov M, Frýdl J, Živčák M, Palmroth S, Ditmarová Ľ, Gömöry D (2019) Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. Eur J for Res 138:79–92. https://doi.org/10.1007/s10342-018-1155-7

    CAS  Article  Google Scholar 

  36. Leigh A, Sevanto S, Close JD, Nicotra AB (2017) The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant Cell Environ 40:237–248. https://doi.org/10.1111/pce.12857

    CAS  Article  PubMed  Google Scholar 

  37. Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C (2008) Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J Zool Syst Evol Res 46:153–161. https://doi.org/10.1111/j.1439-0469.2007.00447.x

    Article  Google Scholar 

  38. Maestri R, Monteiro LR, Fornel R, Freitas TRO, Patterson BD (2018) Geometric morphometrics meets metacommunity ecology: environment and lineage distribution affects spatial variation in shape. Ecography 41:90–100. https://doi.org/10.1111/ecog.03001

    Article  Google Scholar 

  39. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x

    CAS  Article  PubMed  Google Scholar 

  40. Miljković D, Čortan D (2020) Morphometric and morphological analysis of Populus nigra L. leaves in flooded regions. Šumar List 3–4:139–147. https://doi.org/10.31298/sl.144.3-4.3

    Article  Google Scholar 

  41. Miljković D, Stefanović M, Orlović S, Stanković-Neđić M, Kesić L, Stojnić S (2019) Wild cherry (Prunus avium (L.) L.) leaf shape and size variations in natural populations at different elevations. Alp Bot 129:163–174. https://doi.org/10.1007/s00035-019-00227-1

    Article  Google Scholar 

  42. Müller M, Cuervo-Alarcon L, Gailing O, Rajendra KC, Chhetri MS, Seifert S, Arend M, Krutovsky KV, Finkeldey R (2018) Genetic variation of European beech populations and their progeny from Northeast Germany to Southwest Switzerland. Forests 9:469. https://doi.org/10.3390/f9080469

    Article  Google Scholar 

  43. Müller M, Kempen T, Finkeldey R, Gailing O (2020) Low population differentiation but high phenotypic plasticity of European beech in Germany. Forests 11:1354. https://doi.org/10.3390/f11121354

    Article  Google Scholar 

  44. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–992. https://doi.org/10.1016/j.tplants.2010.09.008

    CAS  Article  PubMed  Google Scholar 

  45. Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38:535–552. https://doi.org/10.1071/fp11057

    Article  PubMed  Google Scholar 

  46. Nielsen CN, Jørgensen FV (2003) Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: variation between and within provenances. For Ecol Manag 174:233–249. https://doi.org/10.1016/S0378-1127(02)00042-7

    Article  Google Scholar 

  47. Palci A, Lee MSY (2019) Geometric morphometrics, homology and cladistics: review and recommendations. Cladistics 35:230–242. https://doi.org/10.1111/cla.12340

    Article  PubMed  Google Scholar 

  48. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946. https://doi.org/10.1111/mec.12152

    Article  PubMed  Google Scholar 

  49. Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJ, Lovelock EC, Lusk CH, Niinemets U, Peñuelas J, Rapson G, Wing SL, Wright IJ (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739. https://doi.org/10.1111/j.1469-8137.2010.03615.x

    Article  PubMed  Google Scholar 

  50. Petrík P, Petek A, Konôpková A, Bosela M, Fleischer P, Frýdl J, Kurjak D (2020) Stomatal and leaf morphology response of european beech (Fagus sylvatica L.) provenances transferred to contrasting climatic conditions. Forests 11:1359. https://doi.org/10.3390/f11121359

    Article  Google Scholar 

  51. Pšidová E, Živčák M, Stojnić S, Orlović S, Gömöry D, Kučerová J, Ditmarová L, Střelcová K, Brestič M, Kalaji HM (2018) Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environ Exp Bot 152:97–106. https://doi.org/10.1016/j.envexpbot.2017.12.001

    CAS  Article  Google Scholar 

  52. Ren J, Ji X, Wang C, Hu J, Nervo G, Li J (2020) Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P. nigra. Forests 11(12):1319. https://doi.org/10.3390/f11121319

    Article  Google Scholar 

  53. Robson TM, Sánchez-Gómez D, Cano FJ, Aranda I (2012) Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin. Tree Genet Genomes 8:1111–1121. https://doi.org/10.1007/s11295-012-0496-5

    Article  Google Scholar 

  54. Robson TM, Rasztovits E, Aphalo PJ, Alia R, Aranda I (2013) Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agric for Meteorol 280:76–85. https://doi.org/10.1016/j.agrformet.2013.05.008

    Article  Google Scholar 

  55. Rohlf FJ (2002) Geometric morphometrics and phylogeny. In: MacLeod N, Forey PL (eds) Morphology, shape and phylogeny. CRC Press, New York, pp 175–193

    Chapter  Google Scholar 

  56. Rohlf FJ (2013) TpsDig2 ver 2.1.7, ecology & evolution. SUNY, Stony Brook

    Google Scholar 

  57. Rohlf FJ (2017) Relative warps (Version 1.69) ecology & evolution and anthropology. Stony Brook University, New York

    Google Scholar 

  58. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59. https://doi.org/10.2307/2992207

    Article  Google Scholar 

  59. Sack L, Tyree MT (2005) Leaf hydraulics and its implications in plant structure and function. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Academic Press, New York, pp 93–114

    Chapter  Google Scholar 

  60. Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x

    Article  Google Scholar 

  61. Sack L, Streeter CM, Holbrook NM (2004) Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134:1824–1833. https://doi.org/10.1104/pp.103.031203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Saltré F, Saint-Amant R, Gritti ES, Brewer S, Gaucherel C, Davis BAS, Chuine I (2013) Climate or migration: what limited European beech post-glacial colonization? Glob Ecol Biogeogr 22:1217–1227. https://doi.org/10.1111/geb.12085

    Article  Google Scholar 

  63. Savriama Y (2018) A step-by-step guide for geometric morphometrics of floral symmetry. Front Plant Sci 9:1433. https://doi.org/10.3389/fpls.2018.01433

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scartazza A, Di Baccio D, Bertolotto P, Gavrichkova O, Matteucci G (2016) Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol 36(9):1060–1076. https://doi.org/10.1093/treephys/tpw038

    CAS  Article  PubMed  Google Scholar 

  65. Schmieder DA, Benítez HA, Borissov IM, Fruciano C (2015) Bat species comparisons based on external morphology: a test of traditional versus geometric morphometric approaches. PLoS One 10:e0127043. https://doi.org/10.1371/journal.pone.0127043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Šijačić-Nikolić M, Milovanović J, Nonić M, Knežević R, Stanković D (2013) Leaf morphometric characteristics variability of different beech provenances in juvenile development stage. Genetika 45:369–380. https://doi.org/10.2298/GENSR1302369S

    Article  Google Scholar 

  67. Stefanović M, Nikolić B, Matić B, Popović Z, Vidaković V, Bojović S (2017) Exploration of sexual dimorphism of Taxus baccata L. needles in natural populations. Trees (berl West) 31:1697–1710. https://doi.org/10.1007/s00468-017-1579-6

    Article  Google Scholar 

  68. Stojnić S, Orlović S, Miljković D, Galić Z, Kebert M, von Wuehlisch G (2015) Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. Eur J for Res 134:1109–1125. https://doi.org/10.1007/s10342-015-0914-y

    Article  Google Scholar 

  69. Stojnić S, Orlović S, Miljković D, von Wuehlisch G (2016) Intra- and interprovenance variation of leaf morphometric traits in European beech (Fagus sylvatica L.) provenances. Arch Biol Sci 68:781–788. https://doi.org/10.2298/ABS151008064S

    Article  Google Scholar 

  70. Thiel D, Kreyling J, Backhaus S, Beierkuhnlein C, Buhk C, Egen K, Huber G, Konnert M, Nagy L, Jentsch A (2014) Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur J for Res 133:247–260. https://doi.org/10.1007/s10342-013-0750-x

    Article  Google Scholar 

  71. TIBCO Software Inc (2017) Statistica (data analysis software system), version 13. http://statistica.io

  72. Tognetti R, Michelozzi M, Borghetti M (1994) Response to light of shade-grown beech seedlings subjected to different watering regimes. Tree Physiol 14:751–758. https://doi.org/10.1093/treephys/14.7-8-9.751

    Article  PubMed  Google Scholar 

  73. Tognetti R, Johnson JD, Michelozzi M (1995) The response of European beech (Fagus sylvatica L.) seedlings from two Italian populations to drought and recovery. Trees (berl West) 9:348–354. https://doi.org/10.1007/BF00202499

    Article  Google Scholar 

  74. Uhl D (2014) Variability of selected leaf traits in European beech (Fagus sylvatica) in relation to climatic factors—some implications for palaeoenvironmental studies. Phytol Balc 20:145–153

    Google Scholar 

  75. Van Zyl JJ (2001) The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronaut 48:559–565. https://doi.org/10.1016/S0094-5765(01)00020-0

    Article  Google Scholar 

  76. Vastag E, Kovačević B, Orlović S, Kesić L, Bojović M, Stojnić S (2019) Leaf stomatal traits variation within and among fourteen European beech (Fagus sylvatica L.) provenances. Genetika 51:937–959. https://doi.org/10.2298/GENSR1903937V

    Article  Google Scholar 

  77. Viscosi V (2015) Geometric morphometrics and leaf phenotypic plasticity: assessing fluctuating asymmetry and allometry in European white oaks (Quercus). Bot J Linn Soc 179:335–348. https://doi.org/10.1111/boj.12323

    Article  Google Scholar 

  78. Viscosi V, Fortini P, Slice DE, Loy A, Blasi C (2009) Geometric morphometric analyses of leaf variation in four oak species of the subgenus Quercus (Fagaceae). Plant Biosyst 143:575–587. https://doi.org/10.1080/11263500902775277

    Article  Google Scholar 

  79. Voltas J, Shestakova TA, Patsiou T, di Matteo G, Klein T (2018) Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. Forest Ecol Manag 424:205–215. https://doi.org/10.1016/j.foreco.2018.04.058

    Article  Google Scholar 

  80. Von Wuehlisch G, Krusche D, Muhs HJ (1995) Variation in temperature sum requirement for flushing of beech provenances. Silvae Genet 44:343–346

    Google Scholar 

  81. von Wuehlisch G (2008) EUFORGEN technical guidelines for genetic conservation and use for European beech (Fagus sylvatica). Bioversity International, Rome

    Google Scholar 

  82. Wang Z, Zhang L (2012) Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. Photosynthetica 50:337–342. https://doi.org/10.1007/s11099-012-0039-1

    CAS  Article  Google Scholar 

  83. Wang F, Israel D, Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Aphalo PJ, Robson MT (2021) Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees (berl West) 35:53–67. https://doi.org/10.1007/s00468-020-02011-9

    CAS  Article  Google Scholar 

  84. Watanabe A (2018) How many landmarks are enough to characterize shape and size variation? PLoS One 13:e0198341. https://doi.org/10.1371/journal.pone.0198341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Wellstein C, Chelli S, Campetella G, Bartha S, Galié M, Spada F, Canullo R (2013) Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodivers Conserv 22:2353–2374. https://doi.org/10.1007/s10531-013-0484-6

    Article  Google Scholar 

  86. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gömöry D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182. https://doi.org/10.1093/treephys/tpr101

    Article  PubMed  Google Scholar 

  87. Wright IJ, Dong N, Maire V, Prentice C, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017) Global climatic drivers of leaf size. Science 357:917–921. https://doi.org/10.1126/science.aal4760

    CAS  Article  PubMed  Google Scholar 

  88. Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Funct Ecol 24:485–492. https://doi.org/10.1111/j.1365-2435.2009.01678.x

    Article  Google Scholar 

  89. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometric for biologissts: a primer. Elsevier Academic Press, London

    Google Scholar 

Download references

Acknowledgements

This study was performed within COST (European Cooperation in Science and Technology) Action CLIMO (Climate-Smart Forestry in Mountain Regions—CA15226), supported by the EU Framework Programme for Research and Innovation HORIZON 2020. The research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number: 451-03-9/2021-14/200197). The authors greatly appreciate Mr. Ed Bauer from USDA Forest Service Northern Research Station, Rhinelander, WI, for editing the manuscript for English language and style.

Funding

This research received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Srđan Stojnić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J. Major.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stojnić, S., Viscosi, V., Marković, M. et al. Spatial patterns of leaf shape variation in European beech (Fagus sylvatica L.) provenances. Trees (2021). https://doi.org/10.1007/s00468-021-02224-6

Download citation

Keywords

  • Fagus sylvatica
  • Provenance trial
  • Geometric morphometrics
  • Leaf form
  • Variability