Skip to main content

Allometric relationships of tropical trees along a successional gradient

Abstract

Key message

The allometric relationships of tropical trees change along ontogeny and ecological succession at the level of populations and communities.

Abstract

Tree size and shape can influence their survival and growth, affecting the community dynamics. In this study, we explored how the tree allometric relationship is altered along in the succession of a tropical forest. We measure stem diameter (SD), total height (H), crown volume (CV) of juvenile, and adult trees in areas of 7–17, 20–30, 35–55, and > 80 years of Atlantic Forest in Brazil. The study was carried out for the community (all individuals were considered) and population (the most abundant species). We tested allometric relationships between H, SD and CV with the standardized major axis function. The results indicate that, in general, successional gradient establishes conditions that affect the way resources are invested in trees, despite variations among the type of allometric relationship, the ontogenetic phase, the successional stage and species considered. There are tendencies in individuals becoming taller, and proportionally, with crowns less voluminous along the succession. Variations in height, stem diameter and crown investment along the successional gradient suggest that shade tolerance is the main driver affecting the ontogenetic niche and shaping tree allometry. These results suggest that the successional age and the ontogeny of the individuals affect plant dynamics, and possibly, the coexistence of the species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvarez-Buylla E, Martinez-Ramos M (1992) Demography and allometry of cecropia obtusifolia, a neotropical pioneer tree - an evaluation of the climax-pioneer paradigm for tropical rain forests. J Ecol 80:275–290

    Article  Google Scholar 

  2. Archbald S, Bond WJ (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia Karroo in forest, savanna, and arid environments. OIKOS 102:3–14

    Article  Google Scholar 

  3. Avolio MG, Forrestel EJ, Chang CC, Pierre KJL, Burghardt KT, Smith MD (2019) Demystifying dominant species. New Phytol 223:1106–1126

    PubMed  Article  PubMed Central  Google Scholar 

  4. Bartusková A, Dolezal J, Janecek S, Lanta V, Klimesová J (2015) Changes in biomass allocation in species rich meadow after abandonment: ecological strategy or allometry? Perspect Plant Ecol Evolut Syst 17:379–387

    Article  Google Scholar 

  5. Bazzaz FA (1996) Plants in changing environments: linking physiological, populations, and community ecology. Cambridge University Press, Cambridge, 332 p., United Kingdom

    Google Scholar 

  6. Blanchard E, Birnbaum P, Ibanez T, Boutreux T, Antin C, Ploton P, Vicent G, Pouteau R, Vandrot H, Hequet V, Barbier N, Droissart V, Sonké B, Texier N et al (2016) Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30:1–16

    Article  Google Scholar 

  7. Bohlman S, Pacala S (2012) A forest structure model that determines crown layers and partitions growth and mortality rates for landscape-scale applications of tropical forests. J Ecol 100:508–518

    Article  Google Scholar 

  8. Butterfield RP, Crook RP, Adams R, Morris R (1993) Radial variation in wood specific gravity, fibre length and vessel area for two Central American hardwoods: Hyeronima alchorneoides and Vochysia guatemalensis: natural and plantation-grown trees. IAWA J 14:153–161

    Article  Google Scholar 

  9. Capers RS, Chazdon RL, Brenes AR, Alvarado BV (2005) Successional dynamics of woody seedling communities in wet tropical secondary forests. J Ecol 93:1071–1084

    Article  Google Scholar 

  10. Chanthorn W, Hartig F, Brockelman WY (2017) Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For Ecol Manag 404:100–107

    Article  Google Scholar 

  11. Chazdon RL (2008) Chance and determinism in tropical forest succession. In: Carson W, Schnitzer SA (eds) Tropical forest community ecology, 1. Blackwell Publishing Ltd, rd edn, Nova Jersey, pp 384–408

    Google Scholar 

  12. Chazdon RL (2012) Regeneração de florestas tropicais. Boletim do Museu Paranaense Emílio Goeldi CiênciasNaturais 7:195–218

    Google Scholar 

  13. Chazdon RL (2014) Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago

    Book  Google Scholar 

  14. Chazdon R, Pearcy R, Lee D, Fetcher N (1996) Photosynthetic response of tropical forest plants to contrasting light environments. In: Mulkey S, Chazdon RL, Smith AP (eds) Tropical Forest Plant Ecophysiology. Chapman & Hall, New York, pp 5–55

    Chapter  Google Scholar 

  15. Chazdon RL, Finegan B, Capers RS, Salgado-Negret B, Casanoves F, Boukill V, Norden N (2010) Composition 305 and dynamics of functional groups of trees during tropical forest succession in Northeasern Costa Rica. 306 Biotropica 42:31–40

    Article  Google Scholar 

  16. Chapin FS III, Zavaleta ES, Eviner VT, Rosamond LN, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Day ME, Greenwood MS (2011) Regulation of Ontogeny in Temperate Conifers. In: Meinzer FC, Lachenbruch B, Dawson TE Size- and Age-Related Changes in Tree Structure and Function. Springer, New Work

    Google Scholar 

  18. Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci 105:12069–12074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Ehrenfeld JG, Toth LA (1997) Restoration ecology and ecosystem perspective. Restor Ecol 5:307–317

    Article  Google Scholar 

  20. Eriksson O (2002) Ontogenetic niche shifts and their implications for recruitment in three clonal Vaccinium shrubs: Vaccinium myrtillus, Vaccinium vitis-idaea, and Vaccinium oxycoccos. Can J Bot 80:635–641

  21. Feldpausch T, Banin L, Philips O, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  22. Ferretti AR, Britez RM (2006) A restauração da Floresta Atlântica no litoral do Estado do Paraná, os trabalhos da SPVS. In: Galvão APM, Porfírio-da-Silva V (eds) Restauração Florestal, fundamentos e estudos de caso. Embrapa Florestas, Colombo, pp 87–102

    Google Scholar 

  23. Franci LC, Pereira L, Machado RS, Haddad CRB, Martins FR (2016) Strategies of a light-demanding emergent tree to thrive in a neotropical seasonal forest with alternating light or water shortage. Brazilian Journal of Botany 39:207–218

    Article  Google Scholar 

  24. Furtado AG, Sims LP, Franci LC, Pereira L, Haddad CRB, Martins FR (2017) How a non-pioneer tree attains the canopy of a tropical semideciduous forest. Trees 31:93–103

    Article  Google Scholar 

  25. Gaston KJ (2011) Common ecology. Bioscience 61:354–362

    Article  Google Scholar 

  26. Gotelli NJ, Ellison AM (2011) Princípios de estatística em ecologia. Artmed, Porto Alegre

    Google Scholar 

  27. Grime P (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  28. Grime JP (1979) Plant Strategies and Vegetation Processes. Wiley, Chichester

    Google Scholar 

  29. Hajek P, Seidel D, Leuschner C (2015) Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperature mixed forest. For Ecol Manage 348:108–116

    Article  Google Scholar 

  30. Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE (2011) The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manage 261:1820–1832

    Article  Google Scholar 

  31. Hilbert DW, Messier C (1996) Physical Simulation of Trees to Study the Effects of Forest Light Environment, Branch Type and Branch Spacing on Light Interception and Transmission. Funct Ecol 10:777–783

    Article  Google Scholar 

  32. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Sysmstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  33. Hunter M, Keller M, Morton D, Cook B, Lefsky M, Ducey M, Saleska S, Oliveira Jr RC, Schietti J (2015) Structural Dynamics of Tropical Moist Forest Gaps. Plos One 1–19

  34. IBGE – Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. 2 ª ed. Rio de Janeiro

  35. Jiang L, Ye M, Zhu S, Zhai Y, Huang M, Wu R (2016) Computational identification of genes modulating stem height–diameter allometry. Plant Biotechnol J 14:2254–2264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kauano ÉE, Cardoso FCG, Torezan JMD, Marques MCM (2014) Micro- and meso-scale factors affect the restoration of Atlantic Forest. Natureza Conservação 11:145–151

    Article  Google Scholar 

  37. King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  38. King DA (2011) Size-Related Changes in Tree Proportions and Their Potential Influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function, v, 4. Springer, New York, pp 165–191

    Chapter  Google Scholar 

  39. Kitajima K, Poorter L (2008) Functional basis for resource niche partitioning by tropical trees. In: Carson WP, Schnitzer SA (eds). Tropical Forest Community Ecology, Blackweel Science, pp 160–181

    Google Scholar 

  40. Klein RM (1981) Fisionomia, importância e recursos da vegetação do Parque Estadual da Serra do Tabuleiro. Sellowia 33:5–57

    Google Scholar 

  41. Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecol Lett 14:503–510

    PubMed  Article  PubMed Central  Google Scholar 

  42. Lebrija-Trejos E, Reich PB, Hernández A, Wright SJ (2016) Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol Lett 19:1071–1080

    PubMed  Article  PubMed Central  Google Scholar 

  43. Leite EC, Rodrigues RR (2008) Fitossociologia e caracterização sucessional de um fragmento de floresta estacional do sudeste do Brasil. Revista Árvore 32:583–595

    Article  Google Scholar 

  44. Lida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Funct Ecol 25:1260–1268

    Article  Google Scholar 

  45. Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028

    Article  Google Scholar 

  46. Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 69:1242–1252

    Article  Google Scholar 

  47. Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas e árvores nativas do Brasil, v. 1, 1 edn. Editora Plantarum, Nova Odessa

    Google Scholar 

  48. Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, v. 1, 4 edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  49. Lorenzi H (2016) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, v. 3. Instituto Plantarum, Nova Odessa

  50. Marques MCM, Marques VP, Zwiener FM, Borgo M, Marques R (2014) Forest structure and species composition along a successional gradient of Lowland Atlantic Forest in Southern Brazil. Biota Neotrop 14:1–11

    Google Scholar 

  51. Martínez-Vilalta J, Vanderklein D, Mencuccini M (2006) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Ecophysiology 150:529–544

    Google Scholar 

  52. Matos FB, Bohn A, Labiak PH (2020) The ferns and lycophytes of Reserve Natural Guaricica, Antonina, Paraná, Brazil. Check list 16:183–206

    Article  Google Scholar 

  53. McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Miller TEX, Rudolf VHW (2011) Thinking inside the box: community-level consequences of stage-structured populations. Trends Ecol Evol 9:457–466

    Article  Google Scholar 

  55. Molino J, Sabatier D (2001) Tree Diversity in Tropical Rain Forests: A Validation of the Intermediate Disturbance Hypothesis. Science 294:1702–1104

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Montgomery RA, Chazdon R (2001) Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests. Ecology 82:2707–2718

    Article  Google Scholar 

  57. Nakazawa T (2015) Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul Ecol 57:347–354

    Article  Google Scholar 

  58. Niklas K (1994) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  59. Niinemets U (2006) The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. Ecology 94:464–470

    Article  Google Scholar 

  60. O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  61. Oliver CD, Larson BC (1996) Forest stand dynamics. McGraw-Hill, New York

    Google Scholar 

  62. Osland MJ, Day RH, Larriviere JC, From AS (2014) Aboveground Allometric Models for Freeze-Affected Black Mangroves (Avicennia germinans): Equations for a Climate Sensitive Mangrove-Marsh Ecotone. Plos One 9:e99604

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962

    PubMed  Article  PubMed Central  Google Scholar 

  64. Ouedraogo DY, Doucet JL, Dainou K et al (2018) The size at reproduction of canopy tree species in central Africa. Biotropica 0:1–12

    Google Scholar 

  65. Paterno GB, Siqueira Filho JA, Ganade G (2016) Species-specific facilitation, ontogenetic shifts and consequences for plant community succession. Journal of Vegetation 27:606–615

    Article  Google Scholar 

  66. Pitman NCA, Terborgh JW, Silman MR, Nez VP, Neill DA, Cern CE, Palacios WA, Aulestia M (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:2101–2117

    Article  Google Scholar 

  67. Poorter L, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27:595–607

    CAS  Google Scholar 

  68. Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 83:602–608

    Article  Google Scholar 

  69. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264

    Article  Google Scholar 

  70. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649

    PubMed  PubMed Central  Article  Google Scholar 

  71. Quero JL, Gómez-Aparicio L, Amora R, Maestre FT (2008) Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic Appl Ecol 9:635–644

    Article  Google Scholar 

  72. R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  73. Ross AM, Persson L (2013) Population and community ecology of ontogenetic development. Princeton University Press, Princeton

    Book  Google Scholar 

  74. Rüger N, Wirth C, Wright SJ, Condit R (2012) Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93:2626–2636

    PubMed  Article  Google Scholar 

  75. Ruschel AR, Mantovani M, Reis MS, Nodari RO (2009) characterization and dynamics of two successional stages of secondary atlantic forest. Revista Árvore 33:101–115

    Article  Google Scholar 

  76. Ryan MG, Stape JL, Binkley D, Fonseca S, Loss RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. For Ecol Manage 259:1695–1703

    Article  Google Scholar 

  77. Sala A, Fouts W, Hoch G (2011) Carbon storage in trees: does relative carbon supply decrease with tree size? In: Meinzer FC, Lachenbruch B, Dawson TE (2013) Size- and age- related changes in tree structure and function. Springer, New York

  78. Shukla RP, Ramakrishnan PS (1986) Architecture and Growth Strategies of Tropical Trees in Relation to Successional Status. British Ecological Society 74:33–46

    Google Scholar 

  79. SPVS – Sociedade de Pesquisa em Vida Selvagem (2020) Reservas Naturais da SPVS: 20 anos de história. InVerso, Curitiba

    Google Scholar 

  80. Sterck FJ, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266–272

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Thomas SC (2011) Age-related changes in tree growth and Functional biology: the role of reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, New York, pp 33–64

    Chapter  Google Scholar 

  82. Valladares F, Skillman JB, Pearcy RW (2002) Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. Am J Bot 89:1275–1284

    PubMed  Article  PubMed Central  Google Scholar 

  83. Vázquez-Yanes C, Orozco-Segovia A (1993) Patterns of seed longevity and germination in the tropical rainforest. Annu Rev Ecol Evol Syst 24:69–87

    Article  Google Scholar 

  84. Vitousek PM, Fahey T, Johnson DW, Swift MJ (1988) Element interactions in forest ecosystems: succession, allometry and input-output budgets. Biogeochemistry 5:7–34

    CAS  Article  Google Scholar 

  85. Walters MB, Reich PB (1997) Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. Can J For Res 27:237–247

    Article  Google Scholar 

  86. Warton DI, Duursma RA, Falster DS, Taskinen S (2018) (Standardised) Major Axis Estimation and Testing Routines. Package “smatr”. Version 3.4-8

  87. Weiner J, Thomas SC (1992) Competition and allometry in three species of annual plants. Ecology 73:648–656

    Article  Google Scholar 

  88. West PW (2020) Do increasing respiratory costs explain the decline with age of forest growth rate? Journal of Forestry Research 31:693–712

    CAS  Article  Google Scholar 

  89. Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecological monographs 23:41–78

    Article  Google Scholar 

  90. Yamamoto SI (2000) Forest gap dynamics and tree regeneration. Journal of Forest Research 5:223–229

    Article  Google Scholar 

  91. Zhu Y, Queenborough SA, Condit R, Hubbell SP, Ma KP, Comita LS (2018) Density-dependent survival varies with species life-history strategy in a tropical forest. Ecol Lett 21:506–515

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to José A. Pimenta and Valéria Martins, for the suggestions to first version of the manuscript. To Sociedade de Pesquisa em Vida Selvagem e Educação Ambiental (SPVS), for logistical support; to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships for TMB and ESC; and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for financial support and grant to MCMM.

Funding

Fundação Grupo Boticário (FGB 0801_20082, FGB A2012009), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian Research Council) (CNPq, 475127/2008-0, 577336/2008-8, 304650/2012-9, 303897/2016-3, 457464/2012-7, 401613/2016-3, 303356/2019-7) e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES 88882.181293/2018-01).

Author information

Affiliations

Authors

Contributions

TMB: assisted in data collection, analyzed data and wrote the manuscript; ESC: data collection and compilation; LCF: assisted in data analysis and graphic production; MCMM: conceived the manuscript; all the authors: contributed critically to discussion, to revise the drafts and gave final approval for publication.

Corresponding author

Correspondence to Tamires Marcela Burda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Inoue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 375 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burda, T.M., Capellesso, E.S., Franci, L.C. et al. Allometric relationships of tropical trees along a successional gradient. Trees (2021). https://doi.org/10.1007/s00468-021-02219-3

Download citation

Keywords

  • Ontogeny
  • Secondary forest
  • Succession
  • Tree allometry
  • Tropical forest