Skip to main content

Chemical and cytotoxical changes in leaves of Eugenia uniflora L., a medicinal plant growing in the fourth largest urban centre of Latin America

Abstract

Main communication

Characteristics of the urban environment are sufficient to alter the degree of cytotoxicity of the extract obtained from the leaves of Eugenia uniflora L.

Abstract

Most people in urban environments obtain medicinal plants through their own cultivation. Eugenia uniflora L. is a native shrub of Brazilian restinga that is common in urban areas. The population commonly uses the leaves to treat various diseases, and the Brazilian National Health Service recommends this species. Thus, research is needed to assess the toxicity of medicinal products derived from this plant grown in urban environments and to determine its reliability for use by the population. Therefore, this study evaluated leaves of E. uniflora grown in an urban environment to identify possible chemical and cytotoxical changes. This study presents an integrated analysis of the environmental conditions, physiology and phytochemistry of E. uniflora, in addition to experiments that evaluate the toxic potential of its extract. Chemical analysis of soil and leaves revealed great variation in the plant’s capacity to accumulate chemical elements. Among the chemical elements analysed, lead stands out as it was detected at the concentration limit allowed by World Health Organization in leaves from an urban site. Results of the cytotoxicity analysis revealed significant differences regarding the viability of VERO cells submitted to extract. We suggest that environmental and soil characteristics of the urban site are responsible, at least in part, for the cytotoxic characteristic of E. uniflora leaf extract.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abiko A, de Moraes O (2009) Desenvolvimento urbano sustentável. Escola Politécnica da Universidade de São Paulo, São Paulo

    Google Scholar 

  2. Alves ES, Tresmondi F, Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Bot Bras. São Paulo 22(1):241–248

    Google Scholar 

  3. Ang JB (2008) Economic development, pollutant emissions and energy consumption in Malaysia. J Policy Model 30(2):271–278

    Article  Google Scholar 

  4. Amato-Lourenco LF et al (2016) The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil. Environ Pollut 216:125–134

    CAS  PubMed  Article  Google Scholar 

  5. Amato-Lourenco LF et al (2019) Edible weeds: are urban environments fit for foraging? Sci Total Environ 698:133967

    PubMed  Article  CAS  Google Scholar 

  6. Anjos MJ, Lopes RT, De Jesus EFO, Assis JT, Cesareo R, Barradas CAA (2000) Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochim Acta B 55:1189–1194

    Article  Google Scholar 

  7. Barima Y et al (2014) Assessing atmospheric particulate matter distribution based on saturation isothermal remanent magnetization of herbaceous and tree leaves in a tropical urban environment. Sci Total Environ 470:975–982

    PubMed  Article  CAS  Google Scholar 

  8. Baye H, Hymete A (2010) Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. B Environ Contam Tox 84(2):197–201

    CAS  Article  Google Scholar 

  9. Bezerra LA, Callado CH, Cunha MD (2020) Does an urban environment affect leaf structure of Eugenia uniflora L. (Myrtaceae)? Acta Bot Bras 34(2):266–276

    Article  Google Scholar 

  10. Borges LL et al (2013) Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Rev Bras Farmacogn 23(2):230–238

    CAS  Article  Google Scholar 

  11. Brasileiro BG et al (2008) Plantas medicinais utilizadas pela população atendida no “Programa de Saúde da Família”, Governador Valadares, MG, Brasil. Rev Bras Cienc Farm 44(4):629–636

    Article  Google Scholar 

  12. Cândido GS et al (2020) Toxic effects of lead in plants grown in Brazilian soils. Ecotoxicology 29(3):305–313

    PubMed  Article  CAS  Google Scholar 

  13. Carvalho JBB, Fortes JDN, Corrêa SM, Martins EM (2020) Impactos dos btex em áreas urbanas da cidade do Rio de Janeiro. Química Nova 43:870–877

    Google Scholar 

  14. Chen W et al (2010) Chlorine nutrition of higher plants: progress and perspectives. J Plant Nutr 33(7):943–952

    CAS  Article  Google Scholar 

  15. Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    CAS  PubMed  Article  Google Scholar 

  16. Cunha FAB et al (2016) Cytotoxic and antioxidative potentials of ethanolic extract of Eugenia uniflora L. (Myrtaceae) leaves on human blood cells. Biomed Pharmacother 84:614–621

    PubMed  Article  CAS  Google Scholar 

  17. Dantas G et al (2020) A reactivity analysis of volatile organic compounds in a Rio de Janeiro urban area impacted by vehicular and industrial emissions. Atmos Pollut Res 11(5):1018–1027

    CAS  Article  Google Scholar 

  18. Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B (2012) Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med 66(4):671–679

    CAS  PubMed  Article  Google Scholar 

  19. Echem OG, Kabari LG (2013) Heavy metal content in Bitter Leaf (Vernonia amygdalina) grown along heavy traffic routes in Port Harcourt. Agricultural chemistry. InTech, London

    Google Scholar 

  20. Elzaawely AA, Xuan TD, Tawata S (2007) Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) BL Burtt. and RM Sm. leaves exposed to copper sulphate. Environ Exp Bot 59(3):347–353

    CAS  Article  Google Scholar 

  21. Figueiredo AMG, Nogueira CA, Saiki M, Milian FM, Domingos M (2007) Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ Pollut 145(1):279–292

    CAS  PubMed  Article  Google Scholar 

  22. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJ (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226

    CAS  Article  Google Scholar 

  23. Figueirôa EO et al (2013) Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora L. and Eugenia malaccensis L.: correlation with polyphenol and flavanoid content. The scientific world journal 2013.

  24. Fink S (1991) Un usual patterns in the distribution of calcium oxalate in spruce needles in their possible relationships to the impact of pollutants. New Phytol 119:41–51

    CAS  PubMed  Article  Google Scholar 

  25. Glavac NK et al (2017) Accumulation of heavy metals from soil in medicinal plants. Arch Ind Hyg Toxicol 68(3):236–244

    CAS  Google Scholar 

  26. Goddard SL et al (2019) Determination of antimony and barium in UK air quality samples as indicators of non-exhaust traffic emissions. Environ Monit Assess 191(11):1–12

    Google Scholar 

  27. Gonçalves JFC et al (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Amazônica 40(1):89–98

    Article  Google Scholar 

  28. Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants—from biomolecules to ecosystems. Spinger-verlag, Berlin, pp 1–27

    Google Scholar 

  29. Gupta DK, Walther C (2018) Behaviour of strontium in plants and the environment. Springer, Cham

    Book  Google Scholar 

  30. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42(7):1593–1606

    CAS  Article  Google Scholar 

  31. Holmes RP, Goodman HO, Assimos DG (2001) Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 59:270–276

    CAS  PubMed  Article  Google Scholar 

  32. Horwitz W (1990) Nomenclature for sampling in analytical chemistry. Pure Appl Chem 62(6):1993–1208

    Article  Google Scholar 

  33. Hrotkó K et al (2020) Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environ Geochem Health 43:1–14

    Google Scholar 

  34. IBGE, Instituto Brasileiro de Geografia e Estatística (2015) Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. IBGE, Rio de Janeiro

    Google Scholar 

  35. INEA, Instituto Estadual do Ambiente (RJ) (2020) Relatório da qualidade do ar do Estado do Rio de Janeiro: ano base 2018. Instituto Estadual do Ambiente (RJ), Rio de Janeiro

    Google Scholar 

  36. Junior VFC, Pinto AC, Maciel MAM (2005) Plantas medicinais: cura segura? Quim Nova 28(3):519–528

    Article  Google Scholar 

  37. Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, Cambridge

    Book  Google Scholar 

  38. Kalaji HM et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38(4):102

    Article  CAS  Google Scholar 

  39. Lajayer BA, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  CAS  Google Scholar 

  40. Lehmann V (2002) Electrochemistry of silicon: instrumentation, science, materials and applications. Wiley, Hoboken

    Book  Google Scholar 

  41. Leirião LFL, Debone D, Pauliquevis T, do Rosário NMÉ, Miraglia SGEK (2020) Environmental and public health effects of vehicle emissions in a large metropolis: Case study of a truck driver strike in Sao Paulo, Brazil. Atmos Pollut Res 11(6): 24–31

    Article  CAS  Google Scholar 

  42. Liang Y et al (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428

    CAS  PubMed  Article  Google Scholar 

  43. Lima BD et al (2021) Metal-enriched nanoparticles and black carbon: a perspective from the Brazil railway system air pollution. Geosci Front 12(3):101129

    CAS  Article  Google Scholar 

  44. Lorenzi H, Matos FJ (2002) Plantas medicinais no Brasil: nativas e exóticas. Instituto Plantarum de Estudos da Flora, São Paulo

    Google Scholar 

  45. Lüttge U, Buckeridge M (2020) Trees: structure and function and the challenges of urbanization. Tress. https://doi.org/10.1007/s00468-020-01964-1

  46. Masson V et al (2020) Urban climates and climate change. Annu Rev Environ Resour 45:411–444

    Article  Google Scholar 

  47. Moreira TCL et al (2016) Intra-urban biomonitoring: source apportionment using tree barks to identify air pollution sources. Environ Int 91:271–275

    CAS  PubMed  Article  Google Scholar 

  48. Morim A, Guldner GT (2020) Chlorine gas toxicity. StatPearls, Treasure Island

    Google Scholar 

  49. Nas FS, Ali M (2018) The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecol Environ Sci 3(4):265–268

    Google Scholar 

  50. Neves NR et al (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. Sci Total Environ 407(12):3740–3745

    CAS  PubMed  Article  Google Scholar 

  51. Nordin BEC, Hodgkinson A, Peacock M, Robertson WG (1979) Urinary tract calculi. In: Hamburger J, Crosnier J, Grunfeld JP (eds) Nephrology. Wiley, New York, pp 1091–1130

    Google Scholar 

  52. Okem A et al (2015) Effect of cadmium and aluminum on growth, metabolite content and biological activity in Drimia elata (Jacq.) Hyacinthaceae. S Afr J Bot 98:142–147

    CAS  Article  Google Scholar 

  53. Oliveira MT, Ganem KA, Baptista GM (2017) Análise sazonal da relação entre sequestro de carbono e ilhas de calor urbanas nas metrópoles de São Paulo, Rio De Janeiro, Belo Horizonte e Brasília. Revista Brasileira de Cartografia 69(4): 807–825

  54. Passos FVA et al (2020) Turismo ambiental - conhecendo a realidade da unidade de conservação Parque Estadual Da Pedra Branca, Sede Pau Da Fome–RJ. Revista Gestão em Análise 9(2):101–113

    Article  Google Scholar 

  55. Queiroz JMG et al (2015) Aspectos populares e científicos do uso de espécies de Eugenia como fitoterápico. Revista Fitos Eletrônica 9(2):87–100

    Google Scholar 

  56. Rainho C et al (2013) Genotoxicity of polycyclic aromatic hydrocarbons and nitro-derived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil). Biomed Res Int 2013:765352

    Google Scholar 

  57. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Razic S, Dogo S (2010) Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave acid assisted digestion to assess potential bioavailability. Chemosphere 78:451

    CAS  PubMed  Article  Google Scholar 

  59. Ren S et al (2020) Impact of urbanization on the predictions of urban meteorology and air pollutants over four major North American cities. Atmosphere 11(9):969

    CAS  Article  Google Scholar 

  60. Resende F (2007) Poluição atmosférica por emissão de material particulado: avaliação e controle nos canteiros de obras de edifícios. Dissertação, Universidade de São Paulo, São Paulo

  61. Roy S, Byrne J, Pickering C (2012) A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For Urban Green 11(4):351–363

    Article  Google Scholar 

  62. Santos RS, Sanches FA, Leitão RG, Leitão CC, Oliveira DF, Anjos MJ, Assis JT (2019) Multielemental analysis in Nerium Oleander L. leaves as a way of assessing the levels of urban air pollution by heavy metals. Appl Radiat Isot 152:18–24

    CAS  PubMed  Article  Google Scholar 

  63. Sartori RA et al (2019) Urban afforestation and favela: a study in a community of Rio de Janeiro, Brazil. Urban For Urban Green 40:84–92

    Article  Google Scholar 

  64. Saúde MD (2009) Relação de Plantas Medicinais de Interesse ao SUS. SAÚDE, Brasília

    Google Scholar 

  65. Saumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2012) How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 165:124–132

    PubMed  Article  CAS  Google Scholar 

  66. Schauer JJ, Lough GC, Shafer MM, Christensen WF, Arndt MF, DeMinter JT, Park JT (2006) Characterization of metals emitted from motor vehicles. Res Rep Health Eff Inst 133:1–76

    Google Scholar 

  67. Silva LC et al (2017) Clusia hilariana and Eugenia uniflora as bioindicators of atmospheric pollutants emitted by an iron pelletizing factory in Brazil. Environ Sci Pollut Res 24(36):28026–28035

    Article  CAS  Google Scholar 

  68. Silva DB, Vasconcellos TJ, Callado CH (2021) Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest. Trees, 1–12. https://doi.org/10.1007/s00468-020-02080-w

  69. Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals. Ecotoxicol Environ Saf 73:1352–1361

    CAS  PubMed  Article  Google Scholar 

  70. Soreanu G, Dixon ML, Darlington A (2013) Botanical biofiltration of indoor gaseous pollutants—a mini-review. Chem Eng Sci 229:585–594

    CAS  Article  Google Scholar 

  71. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence. Springer, Dordrecht, pp 321–362

    Book  Google Scholar 

  72. Street RA (2012) Heavy metals in medicinal plant products—an African perspective. S Afr J Bot 82:67–74

    CAS  Article  Google Scholar 

  73. Suwa R et al (2008) Barium toxicity effects in soybean plants. Arch Environ Contam Toxicol 55(3):397–403

    CAS  PubMed  Article  Google Scholar 

  74. Thach LB, Shapcott A, Schmidt S, Critchley C (2007) The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynth Res 94:423–436

    CAS  Article  Google Scholar 

  75. Tomaševič M, Anicic M (2010) Trace element content in urban tree leaves and SEM-EDAX characterisation of deposited particles. Facta Univ Ser Phys Chem Technol 8(1):1–13

    Article  CAS  Google Scholar 

  76. Tomaševič M, Vukmirovič Z, Rajšič S, Tasič M, Stevanovič B (2008) Contribution to biomonitoring of some trace metals by deciduous tree leaves in urban areas. Environ Monit Assess 137:393–401

    PubMed  Article  CAS  Google Scholar 

  77. Tsonev T, Lidon FJC (2012) Zinc in plants—an overview. Emir J Food Agric 24(4):322–333

    Google Scholar 

  78. Vasconcellos TJ, Da Cunha M, Callado CH (2017) A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban Pollution. Environ Sci Pollut Res 24:12049–12062

    Article  Google Scholar 

  79. Wang XP, Shan XQ, Zhang SZ, Wen B (2004) A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55:811–822

    CAS  PubMed  Article  Google Scholar 

  80. Wang JH, Tsai CT, Chiang CF (2015) Screening procedure for airborne pollutants emitted from a high-tech industrial complex in Taiwan. Chemosphere 139:268–275.

    CAS  PubMed  Article  Google Scholar 

  81. WHO (2005) National policy on traditional medicine and regulations of herbal medicines. WHO, Geneva

    Google Scholar 

  82. WHO (2007) WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. WHO, Geneva

    Google Scholar 

  83. Zahedifar M et al (2019) Heavy metals content and distribution in basil (Ocimum basilicum L.) as influenced by cadmium and different potassium sources. Int J Phytoremediation 21(5):435–447

    CAS  PubMed  Article  Google Scholar 

  84. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey, p 947

    Google Scholar 

  85. Zheljazkov VD, Craker LE, Xing B (2006) Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ Exp Bot 58(1):9–16

    CAS  Article  Google Scholar 

  86. Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A (2008a) Aromatic plant production on metal contaminated soils. Sci Total Environ 395(2):51–62

    CAS  PubMed  Article  Google Scholar 

  87. Zheljazkov VD, Jeliazkova EA, Kovacheva N, Dzhurmansk A (2008b) Metal uptake by medicinal plant species grown in soils contaminated by a smelter. Environ Exp Bot 64:207–216

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by: the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; Conselho Nacional desenvolvimento Cientifico e Tecnológico (CNPq); and Fundação de Amparo a Pesquisa do Rio de Janeiro (FAPERJ). We thank the employees of FIOCRUZ Manguinhos and Mata Atlântica for authorising research in the areas, in particular to Dr. Marcelo Neto Galvão for the support during the collections. This study was part of the thesis of L.B. at Programa de Pós-graduação em Biologia Vegetal of UERJ.

Funding

This study was financed in part by: the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; Conselho Nacional desenvolvimento Científico e Tecnológico (CNPq); and Fundação de Amparo a Pesquisa do Rio de Janeiro (FAPERJ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maura Da Cunha.

Ethics declarations

Conflict of interest

All the authors declare that there is not any actual or potential conflict of interest including any financial, personal, or other relationships with other people or organisations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Urban Trees.

Communicated by Locoselli.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Almeida Bezerra, L., Callado, C.H., Vasconcellos, T.J. et al. Chemical and cytotoxical changes in leaves of Eugenia uniflora L., a medicinal plant growing in the fourth largest urban centre of Latin America. Trees (2021). https://doi.org/10.1007/s00468-021-02217-5

Download citation

Keywords

  • Pitangueira
  • Brazilian cherry
  • Native plant
  • Urban plants
  • Atlantic Forest