Skip to main content

Oxygen isotopes in tree rings of Cedrela odorata L. as an indicator of hydroclimate variations in a seasonally dry tropical forest in northeastern Brazil

Abstract

Key message

We present the first δ18O chronology of a tropical dry forest tree species in Brazil. Our results showed a strong relationship of δ18O with inter-annual variation of moisture conditions during the growing season.

Abstract

In seasonally dry tropical environments, natural archives of isotopes present in cellulose of tree rings can be used to study changes in the hydrological cycle. We investigated the stable oxygen isotope ratios in tree-ring cellulose (δ18OTRC) of Cedrela odorata L. from Caatinga forest, northeastern Brazil, and tested if δ18OTRC is correlated to climate parameters. We extracted the α-cellulose from the most recent 50 tree rings (1968–2017). The inter-annual variation of δ18OTRC was strongly synchronized (r = 0.65) among all five studied individuals and closely related to changes in humidity during the growing season. The δ18OTRC was significantly correlated (p < 0.01) with precipitation (r = − 0.59), relative humidity (r = − 0.37), air temperature (r = 0.55), soil water deficit (r = 0.62) and PDSI drought index (r = − 0.62), with most significant correlation during wet season and in the first month of the dry season. The relationship with local climate variables reflects the effect of evaporative enrichment of leaf water on δ18OTRC, whereby dry soil conditions, the low relative humidity and high air temperature reduce stomatal conductance and lead to increased evaporative enrichment of δ18OTRC. Spatial correlations revealed a strong impact of PDSI in δ18OTRC. Our results also show an increase in δ18OTRC values from the 1990s onwards due to extreme and recurring droughts in northeastern Brazil. We conclude that δ18OTRC variations are related to the climatic conditions, especially during the wet period due to the greater water availability for plant physiological processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  2. Amorim IL, Sampaio EVSB, Araújo EL (2009) Fenologia de espécies lenhosas da Caatinga do Seridó. RN Rev Árvore 33(3):491–499. https://doi.org/10.1590/S0100-67622009000300011

    Article  Google Scholar 

  3. Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. https://doi.org/10.1029/2007JG000613

    CAS  Article  Google Scholar 

  4. Aragão JRV, Lisi CS (2019) Caatinga tree wood anatomy: perspectives on use and conservation. Floresta e Ambient 26(2):3–14. https://doi.org/10.1590/2179-8087.099717

    Article  Google Scholar 

  5. Aragão JRV, Groenendijkl P, Lisi CS (2019) Dendrochronological potential of four neotropical dry-forest tree species: climate-growth correlations in northeast Brazil. Dendrochronologia 53:5–16. https://doi.org/10.1016/j.dendro.2018.10.011

    Article  Google Scholar 

  6. Baker JCA, Hunt SF, Clerici SJ et al (2015) Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia. Glob Planet Change 133:298–308. https://doi.org/10.1016/j.gloplacha.2015.09.008

    Article  Google Scholar 

  7. Baker JCA, Gloor M, Spracklen DV, Arnold SR, Tindall JC, Clerici SJ, Leng MJ, Brienen RJW (2016) What drives interannual variation in tree ring oxygen isotopes in the Amazon? Geophys Res Lett 43:11831–11840. https://doi.org/10.1002/2016GL071507

    CAS  Article  Google Scholar 

  8. Baker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31(6):1999–2009. https://doi.org/10.1007/s00468-017-1604-9

    Article  PubMed  Google Scholar 

  9. Ballantyne AP, Baker PA, Chambers JQ, Villalba R, Argollo J (2011) Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15(5):1–35. https://doi.org/10.1175/2010EI277.1

    Article  Google Scholar 

  10. Banda-R K et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387. https://doi.org/10.1126/science.aaf5080

    CAS  Article  PubMed  Google Scholar 

  11. Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138:426–435. https://doi.org/10.1007/s00442-003-1449-3

    Article  PubMed  Google Scholar 

  12. Barkhordarian A, Saatchi SS, Behrangi A, Loikith PC, Mechoso CR (2019) A recent systematic increase in vapor pressure deficit over tropical South America. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-51857-8

    CAS  Article  Google Scholar 

  13. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75(5):1437–1449. https://doi.org/10.2307/1937467

    Article  Google Scholar 

  14. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12. https://doi.org/10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  15. Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493. https://doi.org/10.1111/j.1365-2745.2005.01080.x

    Article  Google Scholar 

  16. Brienen RJW, Zuidema PA, Martínez-Ramos M (2010) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163:485–496. https://doi.org/10.1007/s00442-009-1540-5

    Article  PubMed  Google Scholar 

  17. Brienen RJW, Helle G, Pons TL, Guyot JL, Gloor M (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. PNAS 109:16957–16962. https://doi.org/10.1073/pnas.1205977109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brienen RJW, Hietz P, Wanek W, Gloor M (2013) Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico. J Geophys Res Biogeosci 118:1604–1615. https://doi.org/10.1002/2013JG002304

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Brienen RJW, Gloor E, Clerici S, Newton R, Arppe L, Boom A, Bottrell S, Callaghan M, Heaton T, Helama S, Helle G, Leng MJ, Mielikäinen K, Oinonen M, Timonen M (2017) Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat Commun. https://doi.org/10.1038/s41467-017-00225-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brito SSB, Cunha APMA, Cunningham CC, Alvalá RC, Marengo JA, Carvalho MA (2017) Frequency, duration and severity of drought in the semiarid Northeast Brazil region. Int J Climatol 38(2):517–529. https://doi.org/10.1002/joc.5225

    Article  Google Scholar 

  21. Castagneri D, Battipaglia G, von Arx G, Pacheco A, Carrer M (2018) Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol 38:1098–1109. https://doi.org/10.1093/treephys/tpy036

    CAS  Article  PubMed  Google Scholar 

  22. Chiang J, Koutavas A (2004) Tropical flip-flop connections. Nature 432:684–685. https://doi.org/10.1038/432684a

    CAS  Article  PubMed  Google Scholar 

  23. Cintra BBL, Gloor M, Boom A, Schöngart J, Locosselli GM, Brienen R (2019) Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiol 39(5):845–860. https://doi.org/10.1093/treephys/tpz009

    CAS  Article  Google Scholar 

  24. Cintron BB (1990) Cedrela odorata L. Cedro hembra. Spanish Cedar 2(654):250–257

    Google Scholar 

  25. Corrêa ACB, Tavares BAC, Lira DR, Mutzenberg DS, Cavalcanti LCS (2019) The semi-arid domain of the Northeast of Brazil. In: Salgado AAR, Santos L, Paisani J (eds) The physical geography of Brazil: Geography of the Physical Environment. Springer, Cham, pp 119–150 (10.1007/978-3-030-04333-9_7)

    Chapter  Google Scholar 

  26. Costa MS, Vasconcellos TJ, Barros CF, Callado CH (2013) Does growth rhythm of a widespread species change in distinct growth sites? IAWA J 34(4):498–509. https://doi.org/10.1163/22941932-00000040

    Article  Google Scholar 

  27. Cullen LE, Grierson PF (2007) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Clim Change 85:213–229. https://doi.org/10.1007/s10584-006-9206-3

    CAS  Article  Google Scholar 

  28. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468. https://doi.org/10.3402/tellusa.v16i4.8993

    Article  Google Scholar 

  29. De Andrade EM, Aquino DN, Chaves LCG, Lopes FB (2017) Water as capital and its uses in the Caatinga. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in South America. Springer, Cham, pp 281–302 (10.1007/978-3-319-68339-3_10)

    Chapter  Google Scholar 

  30. Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52. https://doi.org/10.1007/BF01323099

    CAS  Article  PubMed  Google Scholar 

  31. Duffy JE, McCarroll D, Barnes A, Ramsey CB, Davies D, Loader NJ, Miles D, Young GHF (2017) Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. Chem Geol 472:1–7. https://doi.org/10.1016/j.chemgeo.2017.09.007

    CAS  Article  Google Scholar 

  32. Dünisch O, Morais RR (2002) Regulation of xylem sap flow in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. Trees 16:404–416. https://doi.org/10.1007/s00468-002-0182-6

    Article  Google Scholar 

  33. Dünisch O, Puls J (2003) Changes in content of reserve materials in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. J Appl Bot 77:10–17

    Google Scholar 

  34. Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intra-annual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23:101–119. https://doi.org/10.1163/22941932-90000292

    Article  Google Scholar 

  35. Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250. https://doi.org/10.1007/s00468-002-0230-2

    Article  Google Scholar 

  36. EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária (2018) Sistema Brasileiro de Classificação de Solos, 5th edn. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  37. Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68(16):3295–3305. https://doi.org/10.1016/j.gca.2004.01.006

    CAS  Article  Google Scholar 

  38. Farquhar GD, Cernusak LA, Barnes B (2007) Heavy water fractionation during transpiration. Plant Physiol 143:11–18. https://doi.org/10.1104/pp.106.093278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Fichtler E, Helle G, Worbes M (2010) Stable-carbon isotope time series from tropical tree rings indicate a precipitation signal. Tree Ring Res 66(1):35–49. https://doi.org/10.3959/2008-20.1

    Article  Google Scholar 

  40. Foroozan Z, Grießinger J, Pourtahmasi K, Bräuning A (2020) 501 years of spring precipitation history for the semi-srid Northern Iran derived from tree-ring δ18O data. Atmosphere 11:889. https://doi.org/10.3390/atmos11090889

    Article  Google Scholar 

  41. Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M et al (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Change Biol 21:2861–2880. https://doi.org/10.1111/gcb.12916

    Article  Google Scholar 

  42. Gebrekirstos A, Bräuning A, Van Noordwijk M, Mitlöhner R (2011) Keynote Paper: Understanding past, present and future climate changes from east to west Africa. CTA and FARA. Agricultural Innovations for Sustainable Development. Contributions from the Finalists of the 2009/2010 Africa-wide Women and Young Professionals in Science Competitions. Accra, Ghana, pp 77–86

  43. Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:796–818. https://doi.org/10.1093/treephys/tpu040

    CAS  Article  PubMed  Google Scholar 

  44. Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG (2020) Plant responses to rising vapor pressure deficit. New Phytol 226:1550–1566. https://doi.org/10.1111/nph.16485

    Article  PubMed  Google Scholar 

  45. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  46. Islam M, Rahman M, Gebrekirstos A, Bräuning A (2021) Tree-ring δ18O climate signals vary among tree functional types in South Asian tropical moist forests. Sci Total Environ 756:143939. https://doi.org/10.1016/j.scitotenv.2020.143939

    CAS  Article  PubMed  Google Scholar 

  47. Jesus JB, Souza BB, Oliveira AMS, Gama DC (2019) Aridity index and climatic risk of desertification in the semi-arid state of Sergipe. Revis Bras De Climatol 15(24):214–227. https://doi.org/10.5380/abclima.v24i0.62847

    Article  Google Scholar 

  48. Jolly W, Running S (2004) Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Change Biol 10:303–308. https://doi.org/10.1046/j.1365-2486.2003.00701.x

    Article  Google Scholar 

  49. Kahmen A, Sachse D, Arndt SK, Tu KP, Farrington H, Vitousek PM, Dawson TE (2011) Cellulose δ18O is an index of leaf-to-air vapour pressure difference (VPD) in tropical plants. PNAS 108:1981–1986. https://doi.org/10.1073/pnas.1018906108

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kurita N, Ichiyanagi K, Matsumoto J, Yamanaka MD, Ohata T (2009) The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochem Explor 102:113–122. https://doi.org/10.1016/j.gexplo.2009.03.002

    CAS  Article  Google Scholar 

  51. Laumer W, Andreu L, Helle G, Schleser GH, Wieloch T, Wissel H (2009) A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spectrom 23(13):1934–1940. https://doi.org/10.1002/rcm.4105

    CAS  Article  PubMed  Google Scholar 

  52. Lisi CS, Pagotto MA, Anholetto CR, Nogueira FC Jr, Santos HL, Costa CM, Menezes IRN, Roig Juñet FA, Tommasello Filho M (2020) Dendroecological studies with Cedrela odorata L., Northeastern Brazil. In: Pompa-Garcia M, Camarero JJ (eds) Latin American Dendroecology. Springer, Cham, pp 37–59

    Chapter  Google Scholar 

  53. Loader NJ, McCarroll D, Gagen M, Robertson I, Jalkanen R (2007) Extracting climatic information from stable isotopes in tree rings. In: Dawson TE, Siegwolf RTW (eds) Stable Isotopes as Indicators of Ecological Change. Elsevier, Oxford, pp 25–48

    Chapter  Google Scholar 

  54. Locosselli GM, Brienen R, Martins VTS, Gloor E, Boom A, Souza EP, Saldiva PHN, Buckeridge MS (2020) Intra-annual oxygen isotopes in the tree rings record precipitation extremes and water reservoir levels in the Metropolitan Area of São Paulo. Brazil Sci Total Environ 743:140798–141000. https://doi.org/10.1016/j.scitotenv.2020.140798

    CAS  Article  PubMed  Google Scholar 

  55. Machado ICS, Barros LM, Sampaio EVSB (1997) Phenology of Caatinga species at Serra Talhada, PE. Northeastern Brazil Biotropica 29(1):57–68. https://doi.org/10.1111/j.1744-7429.1997.tb00006.x

    Article  Google Scholar 

  56. Marengo JA, Torres RR, Alves LM (2016) Drought in Northeast Brazil—past, present, and future. Theor Appl Climatol 129:1189–1200. https://doi.org/10.1007/s00704-016-1840-8

    Article  Google Scholar 

  57. Marengo JA, Alves LM, Alvala RCS, Cunha AP, Brito S, Moraes OLL (2018) Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An Acad Bras Ciênc 90(2 Suppl. 1):1973–1985. https://doi.org/10.1590/0001-3765201720170206

    Article  PubMed  Google Scholar 

  58. Marques TV, Mendes K, Mutti P, Medeiros S, Silva L, Perez-Marin A et al (2020) Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agric for Meteorol 287:107957. https://doi.org/10.1016/j.agrformet.2020.107957

    Article  Google Scholar 

  59. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. https://doi.org/10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  60. McCarroll D, Loader NJ (2006) Isotopes in tree rings. In: Leng MJ (ed) Isotopes in paleoenvironmental research. Springer, Dordrecht, pp 67–106

    Chapter  Google Scholar 

  61. Mendes KR, Granja JAA, Ometto JP, Antonino ACD, Menezes RSC, Pereira EC, Pompelli MF (2017) Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Funct Plant Biol 44(10):1039–1051. https://doi.org/10.1071/FP17098

    Article  PubMed  Google Scholar 

  62. Nogueira FC Jr, Pagotto MA, Roig FA, Lisi CS, Ribeiro AS (2018) Responses of tree-ring growth in Schinopsis brasiliensis to climate factors in the dry forests of northeastern Brazil. Trees 32(2):453–464. https://doi.org/10.1007/s00468-017-1642-3

    Article  Google Scholar 

  63. Nogueira FC Jr, Pagotto MA, Aragão JRV, Roig FA, Ribeiro AS, Lisi CS (2019) The hydrological performance of Prosopis juliflora (Sw.) growth as an invasive alien tree species in the semiarid tropics of northeastern Brazil. Biol Invasions 21:2561–2575. https://doi.org/10.1007/s10530-019-01994-y

    Article  Google Scholar 

  64. Ohashi S, Durgante FM, Kagawa A et al (2015) Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia 180:685–696. https://doi.org/10.1007/s00442-015-3509-x

    Article  PubMed  Google Scholar 

  65. Oliveira PT, Santos e Silva CM, Lima KC (2013) Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil. Adv Geosci 35:73–78. https://doi.org/10.5194/adgeo-35-73-2013

    Article  Google Scholar 

  66. Olson EJ, Dodd JP, Rivera MA (2020) Prosopis sp. tree-ring oxygen and carbon isotope record of regional-scale hydroclimate variability during the last 9500 years in the Atacama Desert. Palaeogeogr Palaeoclimatol Palaeoecol 538:109408. https://doi.org/10.1016/j.palaeo.2019.109408

    Article  Google Scholar 

  67. Pagotto MA, Roig FA, Ribeiro AS, Lisi CS (2015) Influence of regional rainfall and Atlantic sea surface temperature on tree-ring growth of Poincianella pyramidalis, semiarid forest from Brazil. Dendrochronologia 35:14–23. https://doi.org/10.1016/j.dendro.2015.05.007

    Article  Google Scholar 

  68. Pagotto MA, DeSoto L, Carvalho A, Nabais C, Tomazello Filho M, Ribeiro A, Lisi CS (2017) Evaluation of X-ray densitometry to identify tree-ring boundaries of two deciduous species from semi-arid forests in Brazil. Dendrochronologia 42:94–103. https://doi.org/10.1016/j.dendro.2017.01.007

    Article  Google Scholar 

  69. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457. https://doi.org/10.1146/annurev.ecolsys.110308.120327

    Article  Google Scholar 

  70. Pennington RT, Lehmann CER, Rowland LM (2018) Tropical savannas and dry forests. Curr Biol 28:541–545. https://doi.org/10.1016/j.cub.2018.03.014

    CAS  Article  Google Scholar 

  71. Pons TL, Helle G (2011) Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25:83–93. https://doi.org/10.1007/s00468-010-0527-5

    Article  Google Scholar 

  72. Pumijumnong N, Bräuning A, Sano M, Nakatsuka T, Muangsong C, Buajan S (2020) A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system. Sci Rep 10:8966. https://doi.org/10.1038/s41598-020-66001-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Queiroz LP, Cardoso D, Fernandes MF, Moro MF (2017) Diversity and evolution of flowering plants of the Caatinga domain. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in South America. Springer, Cham, pp 23–63 (10.1007/978-3-319-68339-3_2)

    Chapter  Google Scholar 

  74. Roden JS, Ehleringer JR (1999) Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123:481–489. https://doi.org/10.1007/s004420000349

    Article  Google Scholar 

  75. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35. https://doi.org/10.1016/S0016-7037(99)00195-7

    CAS  Article  Google Scholar 

  76. Rolim GS, Sentelhas PC, Barbieri V (1998) Planilhas no ambiente ExcelTM para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Rev Bras Agrometeorol 6:133–137

    Google Scholar 

  77. Rozanski K, Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr 78:1–36. https://doi.org/10.1029/GM078p0001

    Article  Google Scholar 

  78. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SM, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 35–63 (10.1017/CBO9780511753398.003)

    Chapter  Google Scholar 

  79. Sampaio EVSB (2010) Caracterização do Bioma Caatinga—características e potencialidades. In: Gariglio et al. (orgs) Uso Sustentável e Conservação dos Recursos Florestais da Caatinga, Serviço Florestal Brasileiro, Brasília, pp 27–48. ISBN: 978-85-63269-04-1

  80. Santos MG, Oliveira MT, Figueiredo KV et al (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theor Exp Plant Physiol 26(1):83–99. https://doi.org/10.1007/s40626-014-0008-0

    Article  Google Scholar 

  81. Schollaen K, Heinrich I, Neuwirth B, Krusic PJ, D’Arrigo RD, Karyanto O, Helle G (2013) Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia. Quat Sci Rev 73:170–181. https://doi.org/10.1016/j.quascirev.2013.05.018

    Article  Google Scholar 

  82. Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2014) Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrol 8(1):1–12. https://doi.org/10.1002/eco.1479

    Article  Google Scholar 

  83. Servain J, Caniaux G, Kouadio YK, McPhaden MJ, Araujo M (2014) Recent climatic trends in the tropical Atlantic. Clim Dyn 43:3071–3089. https://doi.org/10.1007/s00382-014-2168-7

    Article  Google Scholar 

  84. Silva VPR, Pereira ERR, Almeida RSR (2012) Estudo da variabilidade anual e intra-anual da precipitação na região nordeste do Brasil. Rev Bras Meteorol 27(2):163–172. https://doi.org/10.1590/S0102-77862012000200005

    Article  Google Scholar 

  85. Silva JMC, Barbosa LCF, Leal IR, Tabarelli M (2017) The Caatinga: understanding the challenges. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in South America. Springer, Cham, pp 3–22 (10.1007/978-3-319-68339-3_1)

    Chapter  Google Scholar 

  86. Souza LSB, Moura MSB, Sediyama GC, Silva TGF (2017) Carbon exchange in a caatinga area during an unusually drought year. Agrometeoros 25(1):37–44 (ISSN 2526-7043)

    Google Scholar 

  87. Sternberg LSLOR (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181:553–562. https://doi.org/10.1111/j.1469-8137.2008.02661.x

    CAS  Article  Google Scholar 

  88. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  89. Thornthwaite CW, Mather JR (1955) The water balance. Publ Climatol 8(1):1–104

    Google Scholar 

  90. Tomazello Filho M, Botosso PC, Lisi CS (2000) Potencialidade da família Meliaceae para dendrocronologia em regiões tropicais e subtropicais. In: Roig FA (ed) (comp) Dendrocronología en América Latina, Editorial de la Universidad Nacional de Cuyo, Mendoza, pp 381–431. ISBN: 950-39-0122-7

  91. Treydte K, Boda S, Graf Pannatier E et al (2014) Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol 202:772–783. https://doi.org/10.1111/nph.12741

    CAS  Article  PubMed  Google Scholar 

  92. Tsuchiya A (1995) Preliminary study on the relationship between vessel growth of thorny shrubs and water balance in the semi-arid region, northeastern Brazil. Geogr Sci 50:123–131

    Google Scholar 

  93. van der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Glob Planet Change 127:58–66. https://doi.org/10.1016/j.gloplacha.2015.01.014

    Article  Google Scholar 

  94. van der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Funct Ecol 31:1674–1689. https://doi.org/10.1111/1365-2435.12889

    Article  Google Scholar 

  95. Volland F, Pucha D, Bräuning A (2016) Hydro-climatic variability in southern Ecuador reflected by tree-ring oxygen isotopes. Erdkunde 70:69–82. https://doi.org/10.3112/erdkunde.2016.01.05

    Article  Google Scholar 

  96. Wagner FH, Hérault B, Bonal D et al (2016) Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences 13:2537–2562. https://doi.org/10.5194/bg-13-2537-2016

    Article  Google Scholar 

  97. Wieloch T, Helle G, Heinrich I, Voigt M, Schyma P (2011) A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 29(2):115–117. https://doi.org/10.1016/j.dendro.2010.08.008

    Article  Google Scholar 

  98. Wigley T, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Climatol 23:201–213. https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO;2

    Article  Google Scholar 

  99. Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351. https://doi.org/10.1163/22941932-90001424

    Article  Google Scholar 

  100. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Ms Iris Burchardt for technical assistance during sample preparation and Ms Roswitha Hoefner-Stich for laboratory analyses. We would like to thank the anonymous reviewers for their helpful comments. The first author expresses a deep appreciation to the tree-ring research group of the Institute of Geography, University of Erlangen-Nuremberg for their assistance during the Post-Doctoral internship.

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Post-Doctoral Research Abroad (88881.170289/2018-01) and was also by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (MCTI/CNPQ/UNIVERSAL 14/2011-449668/2014-2).

Author information

Affiliations

Authors

Contributions

MAP, conducted the fieldwork, established the chronology, performed the isotope analysis and wrote the manuscript. IRNM, contributed to the interpretation of the results and helped in writing the manuscript. CMC, participated in the fieldwork and contributed to the chronology. CSL, supervised the research and the tree ring analyses. AB, supervised the research, the tree ring and isotope analyses, provide critical feedback and helped shape the research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariana Alves Pagotto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by S. Leavitt .

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 470 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagotto, M.A., Menezes, I.R.N., Costa, C.M. et al. Oxygen isotopes in tree rings of Cedrela odorata L. as an indicator of hydroclimate variations in a seasonally dry tropical forest in northeastern Brazil. Trees 35, 1889–1903 (2021). https://doi.org/10.1007/s00468-021-02158-z

Download citation

Keywords

  • Tree-ring isotope
  • Tropical dendroecology
  • δ18O chronology
  • Drought
  • Caatinga vegetation
  • Semi-arid climates