Skip to main content

Measurement of photosynthesis in excised leaves of ornamental trees: a novel method to estimate leaf level drought tolerance and increase experimental sample size

Abstract

Key message

Measuring gas exchange on excised ornamental tree leaves may be a rapid and accurate method to study leaf-level drought tolerance, and greatly increase experiment sample size.

Abstract

Drought is a common phenomenon in arid and semi-arid urban environments. Because water is valuable and limited in these environments, it is crucial to study drought tolerance of ornamental tree species used in urban forests. In a first of its kind study, we observed leaf-level drought tolerance using photosynthetic decline curves in excised leaves of seven ornamental urban tree species: Shantung maple (Acer truncatum), Mexican redbud (Cercis canadensis mexicana), Texas redbud (C. canadensis texensis), White redbud (C. canadensis texensis ‘Alba’), Oklahoma redbud (C. canadensis texensis ‘Oklahoma’), Chinquapin oak (Quercus muehlenbergii), and English oak (Q. robur). For both excised and non-excised treatments, two leaves from the same tree were simultaneously clamped into cuvettes of two Li-Cor LI 6400 XT portable photosynthetic systems. For the excision treatment, the leaf was excised from the branch at 120 s. By comparing photosynthetic decline curves from excised leaves with their non-excised counterparts, we found Mexican redbud and White redbud leaves take a longer period of time (450 s. and 360 s., respectively) compared to English oak leaves (90 s.) to show a significant decline in photosynthetic gas exchange. This technique also proposes a solution to a common problem faced by many plant researchers. While using the leaf excision technique on large trees, we were able to significantly increase sample size with rapidity and accuracy. Thus, we suggest measuring gas exchange on excised leaves of select ornamental tree species as a rapid and accurate method to estimate leaf-level drought tolerance, and greatly increase the number of samples measured in a given time period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams HD, Zeppel MJB, Anderegg WRL et al (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291. https://doi.org/10.1038/s41559-017-0248-x

    Article  PubMed  Google Scholar 

  2. Allen R, Allen RG (2003) REF-ET reference evapotranspiration calculation software for FAO and ASCE standardized equations

  3. Anderegg WRL, Klein T, Bartlett M et al (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci USA 113:5024–5029. https://doi.org/10.1073/pnas.1525678113

    CAS  Article  PubMed  Google Scholar 

  4. Anderson JE, McNaughton SJ (1973) Effects of low soil temperature on transpiration, photosynthesis, leaf relative water content, and growth among elevationally diverse plant populations. Ecol Soc Am 54:1220–1233. https://doi.org/10.2307/1934185

    Article  Google Scholar 

  5. Barbour MM, Warren CR, Farquhar GD et al (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33:1176–1185. https://doi.org/10.1111/j.1365-3040.2010.02138.x

    Article  PubMed  Google Scholar 

  6. Barden JA, Love JM, Porpiglia PJ et al (1980) Net photosynthesis and dark respiration of apple leaves are not affected by shoot detachment. HortScience 15:595–597

    Google Scholar 

  7. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. https://doi.org/10.1126/science.1155121

    CAS  Article  PubMed  Google Scholar 

  8. Brunner I, Herzog C, Dawes MA et al (2015) How tree roots respond to drought. Front Plant Sci 6:1–16. https://doi.org/10.3389/fpls.2015.00547

    Article  Google Scholar 

  9. Buckley TN (2019) How do stomata respond to water status? New Phytol 224:21–36. https://doi.org/10.1111/nph.15899

    Article  PubMed  Google Scholar 

  10. Bueno A, Alfarhan A, Arand K et al (2019) Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. J Exp Bot 70:1627–1638. https://doi.org/10.1093/jxb/erz018

    CAS  Article  Google Scholar 

  11. Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. https://doi.org/10.1093/aob/mcf105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cirelli D, Equiza MA, Lieffers VJ, Tyree MT (2015) Populus species from diverse habitats maintain high night-time conductance under drought. Tree Physiol 36:229–242. https://doi.org/10.1093/treephys/tpv092

    Article  PubMed  Google Scholar 

  13. Clarke JM, McCaig TN (1982) Evaluation of techniques for screening for drought resistance in wheat. Crop Sci 22:503. https://doi.org/10.2135/cropsci1982.0011183x002200030015x

    Article  Google Scholar 

  14. Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweeta Basin. Ecology 74:1551–1558. https://doi.org/10.2307/1940082

    Article  Google Scholar 

  15. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. https://doi.org/10.1093/jxb/erh277

    CAS  Article  PubMed  Google Scholar 

  16. Cregg BM, Dix ME (2001) Tree moisture stress and insect damage in urban areas in relation to heat island effects. J Arboric 27:8–17

    Google Scholar 

  17. Culpepper T, Young J, Montague DT et al (2020) Physiological response to water deficit stress with restricted rooting in tall fescue and zoysiagrass. J Environ Hortic 38:29–36. https://doi.org/10.24266/0738-2898-38.1.29

    CAS  Article  Google Scholar 

  18. Dang QL, Margolis HA, Coyea MR et al (1997) Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference. Tree Physiol 17:521–535. https://doi.org/10.1093/treephys/17.8-9.521

    CAS  Article  PubMed  Google Scholar 

  19. Dawson TE (1996) Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol 16:263–272. https://doi.org/10.1093/treephys/16.1-2.263

    Article  PubMed  Google Scholar 

  20. de Boer HJ, Lammertsma EI, Wagner-Cremer F et al (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci U S A 108:4041–4046. https://doi.org/10.1073/pnas.1100555108

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doll D, Ching JKS, Kaneshiro J (1985) Parameterization of subsurface heating for soil and concrete using net radiation data. Bound Layer Meteorol 32:351–372. https://doi.org/10.1007/BF00122000

    Article  Google Scholar 

  22. Eigenbrode SD, White M, Tipton JL (1999) Differential cutting by leaf-cutter bees (Megachilidae: Hymenoptera) on leaves of redbud (Cercis canadensis) and Mexican redbuds (Cercis canadensis var. mexicana) with different surface waxes. J Kansas Entomol Soc 72:73–81. https://doi.org/10.2307/25085879

    Article  Google Scholar 

  23. Evans JR, Vellen L (1996) Wheat cultivars differ in transpiration efficiency and CO2 diffusion inside their leaves. Crop Res Asia Achiev Perspect 326–329

  24. Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495. https://doi.org/10.1071/PP9940475

    CAS  Article  Google Scholar 

  25. Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248. https://doi.org/10.1093/jxb/erp117

    CAS  Article  PubMed  Google Scholar 

  26. Fischer R, Turner NC (1978) Plant productivity in the arid and semiarid zones. Ann Rev Plant Physiol 29:277–317

    CAS  Article  Google Scholar 

  27. Flexas J, Bota J, Escalona JM et al (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471. https://doi.org/10.1071/PP01119

    Article  PubMed  Google Scholar 

  28. Flexas J, Ribas-Carbó M, Diaz-Espejo A et al (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621. https://doi.org/10.1111/j.1365-3040.2007.01757.x

    CAS  Article  PubMed  Google Scholar 

  29. Flexas J, Galmés J, Gallé A et al (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121. https://doi.org/10.1111/j.1755-0238.2009.00057.x

    CAS  Article  Google Scholar 

  30. Flexas J, Niinemets Ü, Gallé A et al (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59. https://doi.org/10.1007/s11120-013-9844-z

    CAS  Article  PubMed  Google Scholar 

  31. Fox L, Montague T (2009) Influence of irrigation regime on growth of select field-grown tree species in a semi-arid climate. J Environ Hortic 27:134–138

    Article  Google Scholar 

  32. Fox L, Bates A, Montague T (2014) Influence of irrigation regime on water relations, gas exchange, and growth of two field-grown redbud varieties in a semiarid climate. J Environ Hortic 32:8–12

    Article  Google Scholar 

  33. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A 106:10343–10347. https://doi.org/10.1073/pnas.0904209106

    Article  PubMed  PubMed Central  Google Scholar 

  34. Freiman JA, Chalmers TC, Smith H, Kuebler RR (1992) The importance of beta, the type II error, and sample size in the design and interpretation of the randomized controlled trial. Med uses Stat 357–373

  35. Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2007) Response of leaf respiration to water stress in Mediterranean species with different growth forms. J Arid Environ 68:206–222. https://doi.org/10.1016/j.jaridenv.2006.05.005

    Article  Google Scholar 

  36. Garcia RL, Norman JM, McDermitt DK (1990) Measurements of canopy gas exchange using an open chamber system. Remote Sens Rev 5:141–162. https://doi.org/10.1080/02757259009532126

    Article  Google Scholar 

  37. Giuliani R, Koteyeva N, Voznesenskaya E et al (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol 162:1632–1651. https://doi.org/10.1104/pp.113.217497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Grant RH, Heisler GM, Gao W, Jenks M (2003) Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol 120:127–139. https://doi.org/10.1016/j.agrformet.2003.08.025

    Article  Google Scholar 

  39. Graves WR, Dana MN (1987) Root-zone temperature monitored at urban sites. HortScience 22:613–614

    Google Scholar 

  40. Gu J, Yin X, Stomph T-J et al (2012) Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot 63:5137–5153. https://doi.org/10.1093/jxb/ers170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Hänke H, Börjeson L, Hylander K, Enfors-Kautsky E (2017) Corrigendum to “Drought tolerant species dominate as rainfall and tree cover returns in the West African Sahel.” Land Use Policy 62:1. https://doi.org/10.1016/j.landusepol.2016.11.037 ((Land Use Policy (2016) (111–120) (S0264837716304458) (10.1016/j.landusepol.2016.08.023))

    Article  Google Scholar 

  42. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop) 29:773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

    Article  Google Scholar 

  43. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297

    Article  Google Scholar 

  44. Jacobs WP, Suthers HB (1974) Effects of leaf excision on flowering of xanthium apical buds in culture under inductive and noninductive photoperiods. Am J Bot 61:1016–1020. https://doi.org/10.1002/j.1537-2197.1974.tb14041.x

    Article  Google Scholar 

  45. Jahan E, Amthor JS, Farquhar GD et al (2014) Variation in mesophyll conductance among Australian wheat genotypes. Funct Plant Biol 41:568–580. https://doi.org/10.1071/FP13254

    Article  PubMed  Google Scholar 

  46. Jara-Rojas F, Ortega-Farías S, Valdés-Gómez H, Acevedo-Opazo C (2015) Gas exchange relations of ungrafted grapevines (cv. Carménère) growing under irrigated field conditions. S Afr J Enol Vitic 36:231–242. https://doi.org/10.2148/36-2-956

    CAS  Article  Google Scholar 

  47. Jones HG (1993) Drought tolerance and water-use efficiency. In: Smith JAC, Griffiths H (eds) Water deficit: plant responses from cell to community. Bios Scientific Publishers, Oxford, pp 193–201

    Google Scholar 

  48. Jones HG (2013) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Khan HUR, Link W, Hocking TJ, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217. https://doi.org/10.1007/s11104-007-9217-5

    CAS  Article  Google Scholar 

  50. Kim HH (1992) Urban heat island. Int J Remote Sens 13:2319–2336. https://doi.org/10.1080/01431161.2012.638113

    Article  Google Scholar 

  51. Kjelgren R, Rupp L, Kilgren D (2000) Water conservation in urban landscapes. HortScience 35:1037–1040. https://doi.org/10.21273/hortsci.35.6.1037

    Article  Google Scholar 

  52. Kjelgren R, Beeson RC, Pittenger DR, Montague DT (2016) Simplified landscape irrigation demand estimation: slide rules. Appl Eng Agric 32:363–378. https://doi.org/10.13031/aea.32.11307

    Article  Google Scholar 

  53. Körner C (1985) Humidity responses in forest trees: precautions in thermal scanning surveys. Arch Meteorol Geophys Bioclimatol Ser B 36:83–98. https://doi.org/10.1007/BF02269459

    Article  Google Scholar 

  54. Kriedemann PE, Lenz F (1972) The response of vine leaf photosynthesis to shoot tip excision and stem cincturing. Vitis 11:193–197

    CAS  Google Scholar 

  55. Lakso AN (1982) Precautions on the use of excised shoots for photosynthesis and water relations measurements of apple and grape leaves. HortScience 17:368–370

    Google Scholar 

  56. Le Provost G, Domergue F, Lalanne C et al (2013) Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-95

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee M, Huang Y, Yao H et al (2014) Effects of sample storage on spectral reflectance changes in corn leaves excised from the field. J Agric Sci 6:214–220. https://doi.org/10.5539/jas.v6n8p214

    Article  Google Scholar 

  58. Maréchaux I, Bartlett MK, Gaucher P et al (2016) Causes of variation in leaf-level drought tolerance within an Amazonian forest. J Plant Hydraul 3:e004. https://doi.org/10.20870/jph.2016.e004

    Article  Google Scholar 

  59. McAusland L, Atkinson JA, Lawson T, Murchie EH (2019) High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. Plant Methods 15:1–15. https://doi.org/10.1186/s13007-019-0485-x

    CAS  Article  Google Scholar 

  60. Menz KM, Moss DN, Cannell RQ, Brun WA (1969) Screening for photosynthetic efficiency. Crop Sci 9:692. https://doi.org/10.2135/cropsci1969.0011183x000900060004x

    Article  Google Scholar 

  61. Merli MC, Gatti M, Galbignani M et al (2015) Comparison of whole-canopy water use efficiency and vine performance of cv. Sangiovese (Vitis vinifera L.) vines subjected to a post-veraison water deficit. Sci Hortic (Amsterdam) 185:113–120. https://doi.org/10.1016/j.scienta.2015.01.019

    Article  Google Scholar 

  62. Montague DT, Bates A (2015) Response of two field-grown maple (Acer) species to reduced irrigation in a high vapor pressure, semi-arid climate. Arboric Urban For 41:334–345

    Google Scholar 

  63. Montague T, Kjelgren R (2004) Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species. Sci Hortic (Amsterdam) 100:229–249. https://doi.org/10.1016/S0304-4238(03)00145-6

    Article  Google Scholar 

  64. Montague T, Kjelgren R (2006) Use of thermal dissipation probes to estimate water loss of containerized landscape trees. J Environ Hortic 24:95–104

    Article  Google Scholar 

  65. Montague T, McKenney C (2018) Gas exchange and growth of landscape tree species in response to drought and post establishment applied organic mulch. Acta Hortic 1191:167–174. https://doi.org/10.17660/ActaHortic.2018.1191.23

    Article  Google Scholar 

  66. Montague DT, McKenny CB (2016) Gas exchange response to leaf excision for two field-grown quercus species. HortScience 51:S23

    Article  Google Scholar 

  67. Montague T, Kjelgren R, Rupp L (2000) Surface energy balance affects gas exchange and growth of two irrigated landscape tree species in an arid climate. J Am Soc Hortic Sci 125:299–309. https://doi.org/10.21273/jashs.125.3.299

    Article  Google Scholar 

  68. Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc B Biol Sci 363:639–658. https://doi.org/10.1098/rstb.2007.2175

    CAS  Article  Google Scholar 

  69. Muhammad S, Wuyts K, Nuyts G et al (2020) Characterization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For Urban Green 47:126557. https://doi.org/10.1016/j.ufug.2019.126557

    Article  Google Scholar 

  70. Niu G, Rodriguez DS, Gu M (2010) Salinity tolerance of Sophora secundiflora and Cercis canadensis var. mexicana. HortScience 45:424–427. https://doi.org/10.21273/hortsci.45.3.424

    Article  Google Scholar 

  71. Niu G, Rodriguez DS, Cabrera RI et al (2019) Determining water use and crop coefficients in five woody ornamental plants. HortScience 41:1009A – 1009. https://doi.org/10.21273/hortsci.41.4.1009a

    Article  Google Scholar 

  72. Paço TA, David TS, Henriques MO et al (2009) Evapotranspiration from a Mediterranean evergreen oak savannah: the role of trees and pasture. J Hydrol 369:98–106. https://doi.org/10.1016/j.jhydrol.2009.02.011

    Article  Google Scholar 

  73. Parys E, Romanowska E, Siedlecka M, Poskuta JW (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol Plant 20:313–322. https://doi.org/10.1007/s11738-998-0064-7

    CAS  Article  Google Scholar 

  74. Pasternak D, Wilson GL (1974) Differing effects of water deficit on net photosynthesis of intact and excised sorghum leaves. New Phytol 73:847–850. https://doi.org/10.1111/j.1469-8137.1974.tb01313.x

    CAS  Article  Google Scholar 

  75. Pearcy RW (1987) Photosynthetic gas exchange responses of australian tropical forest trees in canopy, gap and understory micro-environments. Funct Ecol 1:169–178. https://www.jstor.org/stable/2389419

  76. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. https://doi.org/10.1093/jxb/erq340

    CAS  Article  PubMed  Google Scholar 

  77. Plan M (2011) High plains underground water conservation District No. 1

  78. Quisenberry JE, Roark B, McMichael BL (1982) Use of transpiration decline curves to identify drought-tolerant cotton germplasm1. Crop Sci 22:918. https://doi.org/10.2135/cropsci1982.0011183x002200050004x

    Article  Google Scholar 

  79. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  80. Reicosky DA, Hanover JW (1978) Physiological effects of surface waxes I. Light reflectance for Glaucous and Nonglaucous Picea pungens. Plant Physiol 62:101–104. https://doi.org/10.1104/pp.62.1.101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Richards R, Rawson H, Johnson D (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Funct Plant Biol 13:465. https://doi.org/10.1071/pp9860465

    Article  Google Scholar 

  82. Rowland DL, Beals L, Chaudhry AA et al (2001) Physiological, morphological, and environmental variation among geographically isolated cottonwood (Populus deltoides) populations in New Mexico. West North Am Nat 61:452–462

    Google Scholar 

  83. Santesteban LG, Miranda C, Royo JB (2009) Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of excised leaves of four grapevine (Vitis vinifera L.) cultivars. Sci Hortic (Amsterdam) 121:434–439. https://doi.org/10.1016/j.scienta.2009.03.008

    Article  Google Scholar 

  84. Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ (2011) Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ 34:1999–2008. https://doi.org/10.1111/j.1365-3040.2011.02398.x

    CAS  Article  PubMed  Google Scholar 

  85. Schenk HJ, Jackson B (2012) Rooting depths, lateral root spreads and below-ground/allometries of plants in water-limited. J Ecol 90:480–494

    Article  Google Scholar 

  86. Scherrer D, Bader MKF, Körner C (2011) Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric For Meteorol 151:1632–1640. https://doi.org/10.1016/j.agrformet.2011.06.019

    Article  Google Scholar 

  87. Serce S, Navazio JP, Gokce AF, Staub JE (1999) Nearly isogenic cucumber genotypes differing in leaf size and plant habit exhibit differential response to water stress. J Am Soc Hortic Sci 124:358–365. https://doi.org/10.21273/Jashs.124.4.358

    Article  Google Scholar 

  88. Shaw DA, Pittenger DR (2004) Performance of landscape ornamentals given irrigation treatments based on reference evapotranspiration. Acta Hortic 664:607–614. https://doi.org/10.17660/ActaHortic.2004.664.76

    Article  Google Scholar 

  89. Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499. https://doi.org/10.1111/j.1469-8137.2006.01826.x

    CAS  Article  PubMed  Google Scholar 

  90. Spinti JE, St. Hilaire R, Van Leeuwen D (2004) Balancing landscape preferences and water use in a desert environment. Acta Hortic 639:129–135. https://doi.org/10.17660/ActaHortic.2004.639.15

    Article  Google Scholar 

  91. Tomás M, Medrano H, Pou A et al (2012) Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Aust J Grape Wine Res 18:164–172. https://doi.org/10.1111/j.1755-0238.2012.00184.x

    CAS  Article  Google Scholar 

  92. Tomás M, Flexas J, Copolovici L et al (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281. https://doi.org/10.1093/jxb/ert086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Tomás M, Medrano H, Escalona JM et al (2014) Variability of water use efficiency in grapevines. Environ Exp Bot 103:148–157. https://doi.org/10.1016/j.envexpbot.2013.09.003

    Article  Google Scholar 

  94. Tominaga J, Kawamitsu Y (2015) Cuticle affects calculations of internal CO2 in leaves closing their stomata. Plant Cell Physiol 56:1900–1908. https://doi.org/10.1093/pcp/pcv109

    CAS  Article  PubMed  Google Scholar 

  95. Tosens T, Niinemets Ü, Westoby M, Write IJ (2012) Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 63:5105–5119. https://doi.org/10.1093/jxb/ers171

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325. https://doi.org/10.1093/jxb/ern185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Xu H, Wang X, Wang J (2001) Modeling photosynthesis decline of excised leaves of sweet corn plants grown with organic and chemical fertilization. J Crop Prod 3:157–171. https://doi.org/10.1300/J144v03n01

    CAS  Article  Google Scholar 

  98. Young R, Bell WD (1974) Photosynthesis in detached leaves of cold-hardened Citrus seedlings. J Am Soc Hortic Sci 99:400–403

    CAS  Google Scholar 

  99. Zotz G, Winter K (1996) Diel patterns of CO2 exchange in rainforest canopy plants. Trop For Plant Ecophysiol. https://doi.org/10.1007/978-1-4613-1163-8_3

    Article  Google Scholar 

  100. Zwack JA, Graves WR, Townsend AM (1999) Variation among red and Freeman maples in response to drought and flooding. HortScience 34:664–668. https://doi.org/10.21273/hortsci.34.4.664

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Plant and Soil Science and College of Agricultural Sciences and Natural Resources for supporting this research. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee, or warranty of the product by Texas Tech University, or Texas AgriLife Research, and does not imply its approval to the exclusion of other products or vendors which may also be suitable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Thayne Montague.

Ethics declarations

Conflict of interest

Authors declare research was conducted without personal, professional, or financial associations that could be interpreted as a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10962 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Montague, D.T. & Villanueva-Morales, A. Measurement of photosynthesis in excised leaves of ornamental trees: a novel method to estimate leaf level drought tolerance and increase experimental sample size. Trees 35, 889–905 (2021). https://doi.org/10.1007/s00468-021-02088-w

Download citation

Keywords

  • Leaf excision
  • Gas exchange
  • Urban ornamental trees
  • Drought stress
  • Sample size